HDU 4359 Easy Tree DP?(是dp但并不是tree dp + 组合计数)

HDU 4359

题意:定义Bear Tree为一颗二叉树,这种二叉树每个结点有一个权值,范围在2^0~2^n-1,并且每个值只用一次,对于每个结点,如果同时存在左右子树,那么左子树的权值和要小于右子树的权值和。求点数为N,层次为D的Bear Tree的数量。

思路

2^0 + 2^1 + ... + 2^n < 2^(n+1)

根据这个性质,我们可以得出权值最大节点必须在右子树上,并且只要同时存在左右子树,则将权值最大节点放在右子树上就一定符合条件。

所以我们用dp[i][j]表示点数为i且深度不超过j的所有方案数,那么输出结果就是dp[n][d]-dp[n][d-1]。

而dp[n][d]的构成分下面两种:

1是只有左子树或只有右子树的情况,我们发现,只需要取任意一个节点来做根节点,乘以可能的子树情况(即dp[n-1][d-1]),再区别开是左子树还是右子树,总共有dp[n-1][d-1] * C(n,1) * 2种情况。

2是同时有左右子树的情况,我们假设左子树有k个节点,则有dp[n-k-1][d-1]【右子树】 * dp[k][d-1]【左子树】 * C(n-2,k) 【左子树节点组成】* C(n,1)【根节点选择】

我们把一二相加即可得到转移方程,值得注意的是,由于n ,k<= 360随时可能爆精度,每次操作都尽可能模除10^9+7.


Code:

/*
* @author Novicer
* language : C++/C
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
#define INF 2147483647
#define cls(x) memset(x,0,sizeof(x))
#define rise(i,a,b) for(int i = a ; i <= b ; i++)
using namespace std;
const double eps(1e-8);
typedef long long lint;

const int maxn = 365;
const int maxd = 365;
const lint mod = 1e9 + 7;
lint dp[maxn][maxd];
lint C[maxn][maxd];
void init(){
	cls(C);
	memset(dp,-1,sizeof(dp));
	C[0][0] = 1;
	for(int i = 1 ; i < maxn  ; i++){
		C[i][0] = 1;
		for(int j = 1 ; j <= i ; j++){
			C[i][j] = C[i-1][j-1] + C[i-1][j];
//			printf("C[%d][%d] : %I64d\n" ,i ,j ,C[i][j]);
			if(C[i][j] > mod) C[i][j] -= mod;
		}
	}
}

lint f(int n , int d){
	if(n == 1 && d >= 1) return 1;
	if(n == 1 || d == 0) return 0;
	if(dp[n][d] != -1) return dp[n][d];
	lint &ans = dp[n][d];
	ans = (f(n-1 , d-1) * C[n][1] * 2) % mod;
	for(int k = 1 ; k <= n-2 ; k++)
		ans = (ans + ((( ( (f(n-k-1 , d-1) * f(k , d-1)) % mod) * C[n-2][k]) % mod) * C[n][1]) % mod) % mod;
	return ans;
}

int main(){
	int t ; cin >> t ; int kase = 1;
	init();
	while(t--){
		int n , d;
		cin >> n >> d;
		lint ans = f(n,d) - f(n,d-1);
		ans = (ans + mod) % mod;
		cout << "Case #" << kase++ << ": " << ans << endl;
	}
	return 0;
}


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值