Python 鸢尾花的识别

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.datasets import load_iris

load_data = load_iris()

# 归一化
scaler = MinMaxScaler()
load_data.data = scaler.fit_transform(load_data.data)

# 相关系数法
select = SelectKBest(f_classif, k=2)
load_data.data = select.fit_transform(load_data.data, load_data.target)

# 把数据集和标签划分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(load_data.data, load_data.target, test_size=0.2)

# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=20)

# 代入训练集
knn.fit(x_train, y_train)

# 预测
y_pre = knn.predict(x_test)
total = 0
right = 0
for i in range(y_pre.size):
    total += 1
    if y_test[i] == y_pre[i]:
        right += 1
print("预测正确率为 : {:.2%}".format(right/total))
print(y_pre)
print(y_test)

运行截图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WiChP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值