Journey
time limit per test 2 seconds
memory limit per test 256 megabytes
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.
Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.
Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.
Input
The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.
Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — the cities connected by the i-th road.
It is guaranteed that one can reach any city from any other by the roads.
Output
Print a number — the expected length of their journey. The journey starts in the city 1.
Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
Examples
input
4 1 2 1 3 2 4
output
1.500000000000000
input
5 1 2 1 3 3 4 2 5
output
2.000000000000000
Note
In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.
In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.
题目大意:有n个城市,n-1条路连接这些城市。一开始有一条马?在第一个城市,每一次这条马都会等概率的去往与当前所在城市相连的城市(它不会去往已经去过的城市),求能经过城市的期望。
题目解析:深搜dfs。从第一个城市开始遍历,每当到一个新的节点,计算当前节点的期望值(当前节点的期望值=(子节点的期望值的和/子节点的个数)+1)。因为对于每一个节点的子节点它们的概率都是一样的,所以只需要求出所有子节点的期望值的和然后除以子节点的个数就可以了,+1 是加上当前节点本身。这种方法和求平均值很像,不过期望好像就是求平均值,哈哈。
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<vector>
using namespace std;
int v[100050];
vector<int>a[100050];
double dfs(int u)
{
v[u]=1;
double ans=0,k=0;
for(int i=0;i<a[u].size();i++){
if(v[a[u][i]]==0){
v[a[u][i]]=1;
ans+=dfs(a[u][i]);
k++;
}
}
if(k!=0) ans/=k;
if(u!=1) ans++;
return ans;
}
int main()
{
int n,c,b;
cin>>n;
for(int i=0;i<n-1;i++){
cin>>b>>c;
a[b].push_back(c);
a[c].push_back(b);
}
printf("%.14f\n",dfs(1));
return 0;
}