python进行groupby分组的问题记录

这篇博客记录了在使用Python处理数据时,如何利用pandas的groupby方法进行数据分组和聚合操作。首先展示了对每日数据的分组求和,然后是按小时分组的数据聚合,通过设置不同的字段进行分组并应用相应的聚合函数,如np.sum。最后,讨论了如何通过index.rename和reset_index方法来重塑分组后的数据索引。
摘要由CSDN通过智能技术生成

 

groupby的时候直接简单分组会发现数据不是平铺的:

 

 

#天的数据累加
def sum_day(data_01_07):
    FIELDS_GROUP_BY=['account_id','plan_id']
    data_01_07=data_01_07[['account_id', 'plan_id', 'cost','leave_phone_num','clue_num','distribute_num','see_num','subscribe_num']].groupby(FIELDS_GROUP_BY).sum()
    data_01_07.index.rename(FIELDS_GROUP_BY, inplace=True)
    data_01_07.reset_index(inplace=True)
    return data_01_07
sum_day_re=sum_day(wd2_5)

 

 

 

#小时的数据分组聚合
def sum_hour(data_01_07_h):
    FIELDS_GROUP_BY=['account_id','plan_id','ct_h']
    data_01_07_h=data_01_07_h.groupby(FIELDS_GROUP_BY).agg({

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值