基于Python+爬虫的IT招聘数据分析及可视化系统设计与实现

💗博主介绍:✌全网粉丝15W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者,计算机毕设实战导师。目前专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌
💗主要服务内容免费功能设计、选题定题、开题报告、任务书、程序开发、论文编写和辅导、论文降重、程序讲解、答辩辅导等,欢迎咨询~
👇🏻 精彩专栏 推荐订阅👇🏻
计算机毕业设计精品项目案例(持续更新)
🌟文末获取源码+数据库+文档🌟
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以和学长沟通,希望帮助更多的人

一.前言

在当今信息化和数字化快速发展的时代,IT行业对人才的需求日益增长,尤其是具备专业技能和经验的Python开发人员。然而,由于招聘信息发布平台的多样性和信息质量的参差不齐,求职者和招聘方在筛选和匹配合适人才时面临着诸多挑战。传统的招聘信息处理方式依赖于人工筛选和分析,不仅效率低下,而且容易遗漏重要信息。因此,基于Python的IT招聘数据分析及可视化系统应运而生。该系统旨在通过自动化处理和智能化分析招聘信息,提高招聘的准确性和效率,为求职者和招聘方提供一个高效、便捷的招聘信息平台。

本文研究了基于Python的IT招聘数据分析及可视化系统。该系统通过基于Scrapy的网络爬虫技术从各大招聘网站爬取实时的招聘信息。然后,使用Python的Pandas库对采集到的数据进行清洗、整合和预处理,确保数据的准确性和一致性。在此基础上,利用Ecahrt等可视化库对数据进行多维度分析和可视化展示。通过这些可视化图表,求职者和招聘方可以直观地了解当前IT招聘市场的动态和趋势,为求职和招聘决策提供有力支持。本文所设计的系统不仅提高了招聘信息处理的效率和准确性,还为优化招聘策略和职业规划提供了科学依据。


二.技术环境

开发语言:Python
python框架:django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
爬虫框架:Scrapy
开发软件:PyCharm/vs code
前端框架:vue.js


三.功能设计

IT招聘数据分析及可视化旨在构建一个完整的数据收集和预处理流程,确保数据的质量和可用性。这个过程包括从各种招聘平台、企业数据库等来源收集IT招聘相关的数据,并进行清洗、整理、去重、标准化等预处理操作,为后续的数据分析和可视化提供基础。探索并实施有效的数据挖掘和统计分析方法。通过对招聘数据进行深入的分析,可以挖掘出有价值的信息,如工作经验、工作地点、IT招聘总数、IT招聘、所属行业等,发现企业招聘中存在的问题,为企业提供有针对性的优化建议。这包括对比使用数据分析和可视化前后的招聘效率、招聘成本等关键指标,以验证该方案的有效性和实用性。设计和开发一个易于使用、功能齐全的基于大数据的招聘数据分析与可视化系统。该系统应能满足企业对招聘数据分析与可视化的需求,提供灵活的数据查询、分析、可视化等功能,并支持多种数据源的接入和整合。
(1)本次针对开发设计系统并设置了相关的实施方案,利用完整的软件开发流程进行分析,完成了设置不同用户的操作权限和相关功能模块的开发,最后对系统进行测试。
(2)框架可以帮助程序开发者快速构建软件的整体层次,本次开发所使用的框架为python和django,具有较强的开发环境部署的优势,程序开发者可以快速构建出相关的软件基本框架,通过多种框架的开发可以帮助程序开发者减少代码量,提升系统的安全和稳定性,能够帮助IT招聘数据分析及可视化功能模块的处理。
(3)数据的操作需要开源框架规范用户的操作,不仅能满足最基本的标准,还能利用数据库的约束关系约束数据库记录,这样就可以使得系统实体和数据库表字段相映射,通过他们之间的关系模型设置系统实体间的关系。

系统总体功能结构图如下所示:
在这里插入图片描述

四.数据设计

系统需要数据库存储系统中的信息,MySQL数据库能够处理系统的信息,当考研信息爬虫与分析需要数据的时候,MySQL数据库能够取得数据交给服务端处理。MySQL数据库能够使用可视化软件操作,管理员可以在可视化软件对数据库的信息管理。
系统数据层设计包括了E-R设计,系统数据实体的设计依赖于E-R的分析和设计,通过E-R能够得到数据库表的设计,E-R能够描述系统所涉及到的实体,还能够描述系统中不同实体的联系和关系。系统总体E-R图如下所示:
在这里插入图片描述
系统部分实体E-R图如下所示:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

五.部分效果展示

5.1前台用户功能实现效果

当用户打开系统的网址后,首先看到的就是首页界面。在这里,用户能够看到基于Python的IT招聘数据分析及可视化的导航条显示首页、IT招聘、公告资讯、个人中心等。用户首页界面如图所示:

在这里插入图片描述

在登录流程中,用户首先在Vue前端界面输入账号和密码。这些信息通过HTTP请求发送到Python后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图所示。
在这里插入图片描述

用户点击IT招聘;在IT招聘页面的搜索栏输入职位名称等信息,进行搜索,然后还可以看到职位名称、公告LOGO、薪资、工作经验、工作地点、招聘公司、公司规模、所属行业、职位详情地址、点击次数、评论数、收藏数 等信息;也可以点击链接进去查看详情或评论、收藏等操作,如图所示。
在这里插入图片描述

用户点击公告资讯;在公告资讯页面的搜索栏输入标题等信息,进行搜索,然后还可以看到标题、分类名称、发布人、点击次数、收藏数、图片等信息;也可以点赞或收藏如图所示。
在这里插入图片描述

用户点击个人中心,在个人中心页面填写详细信息,进行更新信息操作,还可以对修改密码、我的收藏等进行详情操作,如图所示。
在这里插入图片描述

5.2后台管理员功能实现效果

在登录界面中需要使用el-input标签实现输入框供管理员输入用户名和密码,需要使用name标签表示不同的信息。在登录界面中还需要包括角色的按钮,使用el-radio表示按钮,管理员可以点击按钮从而选择不同的角色,如图所示。

在这里插入图片描述

管理员登录进入IT招聘数据分析及可视化可以查看系统首页、用户、IT招聘、系统管理、用户信息等功能,进行详细操作。

用户信息功能实现是在Django后端部分,您需要添加一个新的应用,然后在该应用下创建一个模型(models.py)来定义用户的数据结构,使用Django的ORM来处理与MySQL数据库的交互,包括用户信息的增删改查等操作。接着,在views.py中编写视图逻辑来处理前端请求,使用Django的URL路由(urls.py)将请求映射到相应的视图函数。对于数据的验证和序列化,可以使用Django的表单或序列化器来实现。在前端Vue.js部分,将创建相应的Vue组件,在这些组件中使用axios或其他HTTP库与Django后端的API进行交互,实现用户信息的展示、添加用户、编辑用户信息和删除用户等功能。状态管理可以通过Vuex来维护,比如在store目录下定义用户模块的状态、突变、动作和获取器。如图所示。
在这里插入图片描述

管理员点击IT招聘;在IT招聘页面对职位名称、公告LOGO、薪资、工作经验、工作地点、招聘公司、公司规模、所属行业、职位详情地址、点击次数、评论数、收藏数等信息,进行修改、添加、爬取数据或删除IT招聘,以及查看工作经验、工作地点、所属行业等操作;如图所示。
在这里插入图片描述

管理员点击系统管理;在系统管理页面对轮播图管理、公告资讯、公告资讯分类、关于我们、系统简介等模块信息,进行添加或删除系统等操作;如图所示。
在这里插入图片描述

管理员点击公告资讯;在公告资讯页面对标题、分类名称、发布人、点击次数、收藏数、图片等信息,进行查询或删公告资讯等操作;如图所示。
在这里插入图片描述

5.3数据可视化分析大屏实现效果

IT招聘数据分析及可视化视化展示图,如图所示。

在这里插入图片描述

下面展示是所属行业,对于所属行业大数据,数据获取之后,开始对这些数据进行可视化分析,首先是所属行业的基本情况,其中根据爬取的数据得到有关结果以柱状图的形式来展示,如图所示。
在这里插入图片描述

下面展示是IT招聘总数,对于IT招聘总数大数据获取之后,开始对这些数据进行可视化分析,首先通过页面查看IT招聘总数详情以表格来展示,如图所示。

在这里插入图片描述

下面是工作地点页面以饼状图进行展示如图所示。
在这里插入图片描述

下图是工作经验,通过python爬取清洗后的数据形式以曲线图展示如图所示:

在这里插入图片描述

六.部分功能代码

import scrapy
import pymysql
import pymssql
from ..items import xiangmuItem
import time
import re
import random
import platform
import json
import os
from urllib.parse import urlparse
import requests
import emoji
class xiangmuSpider(scrapy.Spider):
    name = 'xiangmuSpider'
    spiderUrl = 'https://url网址'
    start_urls = spiderUrl.split(";")
    protocol = ''
    hostname = ''

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)


    # 列表解析
    def parse(self, response):
        
        _url = urlparse(self.spiderUrl)
        self.protocol = _url.scheme
        self.hostname = _url.netloc
        plat = platform.system().lower()
        if plat == 'windows_bak':
            pass
        elif plat == 'linux' or plat == 'windows':
            connect = self.db_connect()
            cursor = connect.cursor()
            if self.table_exists(cursor, 'xiangmu') == 1:
                cursor.close()
                connect.close()
                self.temp_data()
                return

        list = response.css('ul.subject-list li.subject-item')
        
        for item in list:

            fields = xiangmuItem()



            fields["laiyuan"] = self.remove_html(item.css('div.pic a.nbg::attr(href)').extract_first())
            if fields["laiyuan"].startswith('//'):
                fields["laiyuan"] = self.protocol + ':' + fields["laiyuan"]
            elif fields["laiyuan"].startswith('/'):
                fields["laiyuan"] = self.protocol + '://' + self.hostname + fields["laiyuan"]
            fields["fengmian"] = self.remove_html(item.css('div.pic a.nbg img::attr(src)').extract_first())
            fields["xiaoshuoming"] = self.remove_html(item.css('div.info h2 a::attr(title)').extract_first())

            detailUrlRule = item.css('div.pic a.nbg::attr(href)').extract_first()
            if self.protocol in detailUrlRule:
                pass
            elif detailUrlRule.startswith('//'):
                detailUrlRule = self.protocol + ':' + detailUrlRule
            else:
                detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRule
                fields["laiyuan"] = detailUrlRule

            yield scrapy.Request(url=detailUrlRule, meta={'fields': fields},  callback=self.detail_parse)


    # 详情解析
    def detail_parse(self, response):
        fields = response.meta['fields']

        try:
            if '(.*?)' in '''div#info span a::text''':
                fields["zuozhe"] = re.findall(r'''div#info span a::text''', response.text, re.S)[0].strip()
            else:
                if 'zuozhe' != 'xiangqing' and 'zuozhe' != 'detail' and 'zuozhe' != 'pinglun' and 'zuozhe' != 'zuofa':
                    fields["zuozhe"] = self.remove_html(response.css('''div#info span a::text''').extract_first())
                else:
                    fields["zuozhe"] = emoji.demojize(response.css('''div#info span a::text''').extract_first())
        except:
            pass
 # 去除多余html标签
    def remove_html(self, html):
        if html == None:
            return ''
        pattern = re.compile(r'<[^>]+>', re.S)
        return pattern.sub('', html).strip()

    # 数据库连接
    def db_connect(self):
        type = self.settings.get('TYPE', 'mysql')
        host = self.settings.get('HOST', 'localhost')
        port = int(self.settings.get('PORT', 3306))
        user = self.settings.get('USER', 'root')
        password = self.settings.get('PASSWORD', '123456')

        try:
            database = self.databaseName
        except:
            database = self.settings.get('DATABASE', '')

        if type == 'mysql':
            connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
        else:
            connect = pymssql.connect(host=host, user=user, password=password, database=database)

        return connect

    # 断表是否存在
    def table_exists(self, cursor, table_name):
        cursor.execute("show tables;")
        tables = [cursor.fetchall()]
        table_list = re.findall('(\'.*?\')',str(tables))
        table_list = [re.sub("'",'',each) for each in table_list]

        if table_name in table_list:
            return 1
        else:
            return 0
@main_bp.route("/python05c7298x/danchexinxi/save", methods=['POST'])
def python05c7298x_danchexinxi_save():
    '''
    '''
    if request.method == 'POST':
        msg = {"code": normal_code, "msg": "success", "data": {}}
        req_dict = session.get("req_dict")
        if danchexinxi.count(danchexinxi, danchexinxi, {"danchebianhao":req_dict["danchebianhao"]})>0:
            msg['code'] = crud_error_code
            msg['msg'] = "单车编号已存在"
            return jsonify(msg)
        for key in req_dict:
            if req_dict[key] == '':
                req_dict[key] = None
        error= danchexinxi.createbyreq(danchexinxi, danchexinxi, req_dict)
        if error!=None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return jsonify(msg)
        

为什么选择我们

大学毕业那年,曾经有幸协助指导老师做过毕业设计课题分类、论文初选(查看论文的格式)、代码刻录等打杂的事情,也帮助过同界N多同学完成过毕业设计工作,毕业后在一家互联网大厂工作8年,先后从事Java前后端开发、系统架构设计等方面的工作,有丰富的编程能力和水平,也在工作之余指导过别人完成过一些毕业设计的工作。2016年至今,团队已指导上万名学生顺利通过毕业答辩,目前是csdn特邀作者、CSDN全栈领域优质创作者,博客之星、掘金/华为云/B站/知乎等平台优质作者,计算机毕设实战导师,专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎咨询~✌

最后

💕💕
最新计算机毕业设计选题篇-选题推荐
小程序毕业设计精品项目案例-200套
Java毕业设计精品项目案例-200套
Python毕业设计精品项目案例-200套
大数据毕业设计精品项目案例-200套
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一点毕设

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值