自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(241)
  • 收藏
  • 关注

原创 基于python强化学习的自主迷宫求解,集成迷宫生成、智能体训练、模型评估等

本系统是一个基于强化学习的自主迷宫求解平台,集成了迷宫生成、智能体训练、模型评估和可视化展示等核心功能。系统支持30×30、70×70、100×100三种尺寸的迷宫,采用Q-Learning和DQN两种强化学习算法,能够自主探索迷宫环境并学习最优路径。系统提供图形化界面展示智能体求解过程,支持实时训练监控和训练曲线可视化,同时具备GIF动图生成功能,可动态展示智能体的探索路径。DQN基于深度神经网络,使用经验回放和目标网络技术,适合大尺寸(70×70、100×100)迷宫,能够处理更大规模的状态空间。

2026-01-25 20:23:10 929

原创 基于 Flask + Bootstrap + SocketIO 架构的在线多人坦克对战游戏平台,包含玩家控制、AI 智能体决策、碰撞检测、子弹系统、地图管理等完整功能

系统采用服务器权威模式,所有游戏逻辑在服务端 Python 环境中运行,前端通过 Canvas 实时渲染游戏画面,WebSocket 实现 60 FPS 的高帧率状态同步。游戏状态管理模块负责维护整个游戏的全局状态,包括运行状态、玩家数据、AI 数据、子弹列表、地图数据、分数统计等。模块每帧接收服务端发送的游戏状态,根据坦克、子弹、墙壁的位置和属性进行绘制。碰撞检测模块负责实时检测游戏对象间的碰撞事件,包括坦克与墙壁、子弹与坦克、子弹与墙壁的碰撞。玩家击毁 AI 坦克获得分数,AI 击毁玩家坦克获得分数。

2026-01-25 20:11:49 945

原创 基于大数据和机器学习技术开发的宫颈癌风险因素分析与可视化系统,集成随机森林算法、K-Means聚类分析、PySpark 大数据处理以及 DeepSeek AI 智能助手

系统支持用户和管理员双角色,实现了从健康数据采集、风险评估、可视化报告到群体特征分析的全流程管理,通过科学的数据分析和可视化展示,帮助用户了解自身健康状况,为医疗决策提供数据支持。用户可详细录入个人健康信息,包括年龄、体重、身高、生活习惯(吸烟、饮酒、运动频率)、生育史、HPV感染情况、家族病史等十四项关键风险因素。系统综合考虑各项风险因素的权重和交互作用,输出低、中、高三个风险等级,并显示各项指标的风险概率,帮助用户直观了解自身宫颈癌患病风险,为预防措施提供科学依据。

2026-01-25 19:59:23 884

原创 基于flask 智能体的教学演示文档生成及质量评价系统,集成了DeepSeek 大语言模型实现自动化文档生成和多维度质量评估

系统支持用户和管理员两种角色,用户可根据教学需求生成定制化文档并进行质量评价,管理员可通过管理后台对用户、文档和评价进行全面管理。生成的文档支持 Markdown 格式预览,内容经过语义理解和教学逻辑优化,确保教学文档的专业性和可读性。管理员可查看系统中所有文档的评价记录,包括评价文档、评价分数、各维度评分、反馈意见和评价时间。支持评价删除操作,删除评价后文档状态自动恢复为"已生成",允许用户重新评价。管理员可查看系统中所有用户生成的文档列表,显示文档标题、作者、创建时间、主题、难度和状态等信息。

2026-01-25 19:35:41 1039

原创 基于scrapy的网易云音乐数据采集与分析设计实现

在流媒体音乐时代,网易云音乐以其独特的社区属性和个性化的歌单功能,成为了中国数字音乐市场的重要平台。歌单作为其核心产品之一,不仅聚合了音乐资源,更承载了用户的音乐品味、情感表达和社交互动。歌单的评论数量反映了其社区热度与用户参与度;标签系统是平台内容分类与个性化推荐的基础;而歌单描述文本则富含创建者的主观表达与音乐场景描绘。对这些数据进行深入分析,能够量化观察音乐社群的互动模式、流行音乐风格的分布态势以及用户描述音乐的常用语汇,对于理解当代音乐消费文化、优化平台内容运营策略具有实践意义。

2026-01-24 23:35:36 776

原创 spark+flask的新能源车数据分析与智能推荐系统,融合大数据分析、机器学习和人工智能技术

用户可以通过自然语言提问,AI助手会基于系统中的数据和分析结果,给出专业、准确、个性化的回答。用户可以选择预测月份、车型类型等参数,系统会自动调用训练好的模型进行预测,并生成预测图表和详细数据。系统还提供模型性能评估指标,包括均方误差、决定系数等,确保预测结果的可靠性。系统内置智能爬虫模块,可自动采集汽车之家新能源汽车的详细数据,包括车型名称、品牌、价格、续航里程、马力、电池容量、评分等关键信息。数据采集后,系统会自动进行数据清洗,包括缺失值填充、异常值处理、数据格式统一等预处理操作,确保数据质量。

2026-01-24 23:16:04 784

原创 基于YOLO深度学习算法的人群密集监测与统计分析预警系统,实现人群密集度的实时监测、智能分析和预警功能,支持图片和视频流两种输入方式

支持用户自定义多边形监测区域,通过可视化方式在图片上绘制监测范围。可创建多个监测区域,每个区域可独立设置名称、描述和人数阈值。系统仅统计区域内人数,排除干扰因素,提高监测精度和针对性,适用于复杂场景的精准管理。

2026-01-22 23:41:58 770

原创 基于Flask框架的智能系统架构图生成平台,支持用户通过自然语言描述需求自动生成可视化架构图

系统还提供用户反馈收集机制,通过管理员后台管理反馈数据、监控自动化评分、执行系统测试及调整配置参数,实现基于反馈循环的模型迭代增强,持续提升架构图生成质量。支持分层展示(前端层、网关层、服务层、数据层),节点采用长方形样式,连接线为直线,布局清晰直观。前端层、网关层、服务层、数据层使用不同颜色区分,节点为长方形,连接线为直线。管理员登录后进入管理后台,查看系统统计数据,包括注册用户数、生成的架构图总数和用户反馈数量。点击任意记录可重新加载对应的架构图,方便对比分析不同需求的生成结果,支持快速访问历史数据。

2026-01-22 12:01:04 861

原创 基于Flask的心理健康咨询管理与智能分析,集成AI智能对话咨询、心理测评(PHQ-9抑郁量表/GAD-7焦虑量表)、情绪追踪记录、危机预警识别

系统运用jieba分词技术和情感词典实现情绪倾向分析,通过DeepSeek大语言模型提供个性化AI咨询,利用ECharts实现数据可视化展示,帮助用户了解心理健康状况,协助管理员进行全局监控与决策支持,构建温暖治愈的心理健康管理生态系统。通过危机词库匹配识别危机信号(自杀、自伤等关键词),判定危机等级(0-5级),系统自动触发预警机制并引导用户寻求专业心理援助。支持用户自助记录每日情绪状态,可选择情绪类型(开心、难过、焦虑、生气等)、设置情绪强度(1-10分)、添加文字备注。

2026-01-21 21:01:22 818

原创 基于Flask的大学生就业信息管理与推荐系统,整合智能推荐算法、薪资预测模型和大语言模型AI咨询功能

学生可询问面试技巧、简历优化、职业规划、行业前景等问题,AI顾问基于知识库和历史对话提供个性化建议,帮助学生提升求职竞争力。管理员端提供多维度的数据统计分析,包括用户数量、职位数量、企业数量、申请趋势、行业分布、薪资分布等。采用协同过滤和内容推荐的复合算法,根据学生的简历信息、历史申请记录、技能特长等数据,智能匹配最合适的职位。学生可一键申请心仪职位,系统记录申请状态包括已提交、审核中、面试、录用、拒绝等阶段。管理员可查看和管理所有用户信息,包括用户名、邮箱、角色、状态等。

2026-01-21 19:52:40 1309

原创 基于YOLO的图像识别系统,结合Flask、Bootstrap和SQLite,提供图像检测、数据管理和用户交互功能,可以检测80个类别

基于YOLO的图像识别系统,结合Flask、Bootstrap和SQLite,提供完整的图像检测、数据管理和用户交互功能。

2026-01-20 22:11:41 680

原创 基于Flask电商购物用户行为分析数据可视化系统,集成多种机器学习算法(RFM、协同过滤、K-means、Apriori、随机森林)与ECharts可视化技术

本系统是基于Flask构建的电商数据分析平台,集成了多种机器学习算法(RFM、协同过滤、K-means、Apriori、随机森林)与ECharts可视化技术,为电商企业提供全面的用户行为分析与决策支持。系统通过整合真实电商CSV数据,实现了用户行为追踪、流量来源分析、转化漏斗优化、客户分群、商品推荐、流失预警等核心功能,帮助商家深入理解用户需求,提升运营效率和转化率。提供用户活跃度趋势图、行为类型分布图、设备类型分布图,以及用户行为详细数据表格,帮助商家全面了解用户行为特征。

2026-01-20 20:49:29 651

原创 基于神经网络算法的多模态内容分析系统,采用Flask + Bootstrap + ECharts + LSTM-CNN + 注意力机制

基于神经网络算法的多模态内容分析系统,采用Flask + Bootstrap + ECharts + LSTM-CNN + 注意力机制 + SQLite技术栈。

2026-01-17 23:54:15 933

原创 基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术

系统实现了用户角色分级管理(普通用户、中介、管理员),提供数据可视化、房价预测、智能推荐、地图找房、房源对比、在线咨询、交易管理、客户管理等完整功能,帮助用户精准找房,辅助中介高效管理客户和房源,支持管理员全面监控系统运行状态。系统自动提取房源的价格、面积、户型、楼层、朝向、装修、房龄、区域、发布时间等关键信息,以表格形式展示差异。中介可查看所有咨询,及时回复用户问题。

2026-01-17 22:29:58 860

原创 基于Flask+ECharts+Bootstrap构建的微博智能数据分析大屏

微博数据洞察可视化平台是基于Flask+ECharts+Bootstrap构建的智能数据分析大屏,旨在为运营人员、市场分析师和决策者提供微博博文数据的全方位可视化洞察。平台采用暗色科技风设计,融合渐变色彩与动态交互效果,通过情感分析、趋势分析、时空分布、内容洞察和KOL分析五大核心模块,实现对微博数据的深度挖掘与价值提取。平台支持实时数据更新、多维数据联动展示,帮助用户快速把握舆情动态、用户行为特征和热点话题趋势,为内容运营、用户增长和商业决策提供数据支撑。

2026-01-12 23:02:18 656

原创 基于Flask开发的智能招聘平台,集成了AI匹配引擎、数据预测分析和可视化展示功能

本系统是一个基于Flask开发的智能招聘平台,集成了AI匹配引擎、数据预测分析和可视化展示功能。系统采用前后端分离架构,支持用户、企业、管理员三种角色,为求职者提供智能职位推荐和简历分析服务,为企业提供高效的招聘管理和人才筛选工具,为管理员提供完善的平台监管能力。系统融合了DeepSeek大语言模型、XGBoost机器学习算法和ECharts数据可视化,打造全流程智能化的招聘生态。

2026-01-12 21:57:02 1088

原创 基于 Flask 框架开发的智能化医院管理平台,涵盖从患者挂号、医生诊疗、处方开具、药品管理到数据分析、系统监控的完整医疗管理流程

本系统是一个基于 Flask 框架开发的智能化医院管理平台,集成了患者端、医生端和管理员端三大功能模块。系统支持在线预约挂号、智能导诊、健康风险评估、AI 辅助诊断等核心功能,整合了 DeepSeek 大模型实现智能化服务。系统采用 Bootstrap 5 进行界面设计,使用 SQLite 数据库存储数据,通过 Flask-Login 实现用户认证管理。系统涵盖了从患者挂号、医生诊疗、处方开具、药品管理到数据分析、系统监控的完整医疗管理流程,为医院提供了一体化的信息化解决方案。

2026-01-09 23:12:31 613

原创 基于机器学习的地震风险评估与可视化系统,采用Flask后端与Bootstrap前端,系统集成DBSCAN空间聚类算法与随机森林算法

地震数据分析系统是一个基于机器学习的地震风险评估与可视化平台,采用Flask后端框架与Bootstrap前端框架构建。系统集成了DBSCAN空间聚类算法与随机森林分类器,能够对地震数据进行智能分析和风险预测。平台提供用户端与管理端双端功能,支持数据导入、清洗、可视化展示、风险评估及用户权限管理。系统采用SQLite数据库存储数据,使用ECharts实现交互式数据可视化,界面设计采用深色科技风格,支持响应式布局,为地震研究与管理决策提供数据支持。

2026-01-09 22:43:36 702

原创 基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型

地区空气质量数据分析系统是一个基于大数据和深度学习的智能空气质量监测与预测平台。系统采用Apache Spark进行高效的大规模数据预处理,利用TensorFlow构建LSTM深度学习模型实现精准的AQI预测,通过Flask框架提供RESTful API服务,结合Bootstrap和ECharts打造直观的可视化界面。系统采用前后端分离架构,包含用户端和管理端两大模块,用户端面向公众提供实时空气质量查询和历史趋势分析,管理端面向管理员提供数据管理、模型训练和系统配置功能。

2026-01-08 23:13:37 1133

原创 基于 Flask 框架开发的在线学习平台,集成人工智能技术,提供分类练习、随机练习、智能推荐等多种学习模式

智能刷题系统是一款基于 Flask 框架开发的在线学习平台,集成了人工智能技术为用户提供个性化的刷题体验。系统支持多种题型(选择题、判断题、简答题),提供分类练习、随机练习、智能推荐等多种学习模式。通过 DeepSeek AI 技术,系统能够自动批改简答题并提供详细解析,帮助用户快速提升学习效率。管理员可以通过后台管理系统轻松管理题目、分类和用户数据。

2026-01-08 23:04:47 1157

原创 基于Flask框架开发的智能旅游推荐平台,采用复合推荐算法,支持管理员、导游、普通用户三种角色

本系统是一款基于Flask框架开发的智能旅游推荐平台,采用复合推荐算法为用户提供个性化旅游建议。系统支持管理员、导游、普通用户三种角色,每个角色拥有独立的功能权限。管理员负责系统整体管理和数据分析;导游负责景点信息录入、旅游路线设计及关联规则分析;系统使用SQLite数据库存储数据,通过Bootstrap 5实现响应式前端界面,利用ECharts进行数据可视化展示。

2026-01-07 18:34:37 1311

原创 基于Spark智能推荐算法的农业作物推荐系统,推荐算法使用Spark ML风格推荐引擎

基于Spark智能推荐算法的农业作物推荐系统,为农民提供精准的作物种植建议。

2026-01-06 23:37:33 1103

原创 基于 Flask 的音乐推荐与可视化分析系统,包含用户、创作者、管理员三种角色,集成 ECharts 进行数据可视化,采用混合推荐算法

基于 Flask 的音乐推荐与可视化分析系统,包含用户、创作者、管理员三种角色,使用 SQLite 数据库,集成 ECharts 进行数据可视化,采用混合推荐算法。

2026-01-06 23:17:48 627

原创 基于机器学习的智能健身风险分析系统,整合数据可视化与人工智能算法

基于机器学习的智能健身风险分析系统,整合数据可视化与人工智能算法,为健身房会员健康管理和运营提供决策支持。

2026-01-05 23:58:42 653

原创 基于Flask的智能服装搭配推荐系统,采用协同过滤和内容过滤的混合推荐算法,支持虚拟试穿和个性化建议

基于Flask的智能服装搭配推荐系统,采用协同过滤和内容过滤的混合推荐算法,支持虚拟试穿和个性化建议。

2026-01-05 23:46:28 1177

原创 基于B站热点评论数据文本分析,包括词频分析、BERT模型情感分析、LDA主题分析

主题数(num_topics=5)的选择需基于困惑度与一致性曲线的拐点分析:困惑度衡量模型对数据的拟合程度(值越低越好),一致性评估主题内词语的语义相关性(值越高越好),理想的主题数应使困惑度较低同时一致性较高,找到两者平衡的肘点位置。接下来,进行正则清洗的步骤。TF‑IDF(词频‑逆文档频率)是一种用于评估词语在文档集合中重要程度的统计度量方法,其核心思想是:一个词语在当前文档中出现次数越多(TF越高),同时在所有文档中出现次数越少(IDF越高),则该词语对当前文档的区分能力越强,权重越大。

2025-12-29 16:19:07 922

原创 基于django的新能源汽车租赁推荐分析系统,包括用户、商家、管理员三个角色,协同过滤+基于内容、用户画像的融合算法推荐

本文档介绍了新能源汽车租赁平台的智能推荐系统技术方案。系统采用混合推荐算法,整合协同过滤(30%)、基于内容(25%)、热门推荐(25%)和个性化推荐(20%)四种策略。技术架构基于Django框架,包含前端展示层、Django视图层(集成推荐引擎)、模型层和SQLite数据库。核心算法部分详细说明了协同过滤和基于内容推荐的实现原理,包括用户相似度计算、车辆属性匹配等关键逻辑。系统能为登录用户提供个性化推荐,为未登录用户提供热门推荐,并实时更新推荐结果。

2025-12-29 16:02:46 1357

原创 基于Python的实习僧招聘数据采集与可视化分析,使用matplotlib进行可视化

公司规模信息存储在 company_tip 列中,使用正则表达式提取类似“150-500人”或“2000人以上”的模式,将其存储在新列 company_scale 中,继续使用正则表达式,提取 company_tip 列中的非规模信息。接着,使用数据分析库(如 pandas)进行薪资数据的清洗和转换,将薪资范围的字符串数据(如“8-10k”)转化为数值数据,可以通过提取数值的中位数或范围的下限来进行转换。图中的标签位置和大小由生成的频次数据控制,使得常见标签更加突出,从而清晰地展示出岗位福利的热门关键词。

2025-08-07 22:21:01 1449 13

原创 基于django的非物质文化遗产可视化网站设计与实现

此外,邓铭的研究关注了非遗数字平台的可持续发展,提出了结合大数据和人工智能技术,对非遗项目进行智能化管理和分析的方法,帮助非遗保护工作者实时监控非遗项目的状况并作出相应调整。用户需求分析与功能设计:为满足不同用户群体(如文化爱好者、研究人员等)的需求,设计用户友好的功能模块,包括用户注册与登录、浏览非遗项目、搜索功能、发布内容、评论互动和上传图片等,增强用户的参与感和文化体验。通过清晰的角色划分和功能设计,确保用户和管理员可以在平台上进行各自所需的操作,提供良好的互动体验和高效的内容管理。

2025-08-07 22:14:23 884

原创 基于可视化分析的房地产市场监测与预警机制,展示二手房的价格趋势、区域分布、户型结构等关键信息

网络爬虫(Web Crawler),也称为网络蜘蛛(Web Spider),是一种在网络上自动地爬取信息的程序,主要作用是在大量的数据中按一定规则进行爬取和存储。其详细处理流程如图:2-1所示。图2-1 爬虫流程图。

2025-08-06 21:12:38 930

原创 基于跨境电商场景的智能商品管理系统,采用Bootstrap+Django+MySQL技术架构,实现用户行为追踪、智能推荐、多维度商品展示等核心功能

本研究旨在通过对该免税城购物平台上彩妆类商品的数据进行深入研究,挖掘消费者行为模式、偏好趋势等有价值信息,为优化平台商品展示、精准营销、库存管理等提供数据支持,从而提升消费者购物体验,提高平台运营效率和销售额。通过运用前沿的数据分析技术,深入挖掘消费者对彩妆产品的需求偏好和行为模式,为平台优化商品展示、精准营销以及库存管理等提供有力支持,从而为用户提供更优质、个性化的服务。描述了用于展示浏览最多的商品列表,用户可以通过该页面查看商品的浏览量、基本信息(如名称、商家、价格、描述等)以及与浏览相关的数据。

2025-08-06 21:00:42 1427

原创 基于python的二手车价格预测及可视化系统,采用集成学习算法和diango框架

对于二手车市场数据分析与可视化系统,需要添加所需要的数据信息,对于添加信息,需要管理员进入添加界面,根据选框的内容进行填写所要添加的数据信息,信息输入完成后判断数据信息是否符合要求,符合要求则添加完成,管理员所添加的信息不符合要求,则需要返回到第一步,重新输入数据信息,再进行判断操作,如图4.4所示。上牌时间分析柱形图实现类似,数据源为按年份分组的licenseDate字段,视图层使用annotate聚合,前端通过option.xAxis.data绑定年份列表,series.data绑定对应数量。

2025-08-05 21:53:33 1642

原创 基于LDA主题的网络舆情与情感分析——以云南某景区话题为例

根据舆情生命周期理论构建舆情情感和主题的时序演化,对不同时期的评论分别进行K-means聚类,结合轮廓系数确定最优聚类数,识别不同情感群体关注的核心议题(如“救援效率争议”“景区管理漏洞”“公众同理心表达”等),创建不同时期关联网络的可视化,揭示舆情传播的关键节点与情绪扩散路径,最后采用LDA主题模型挖掘舆情主题,按事件阶段(萌芽期、爆发期、消退期)分别建模,通过困惑度指标确定各阶段最优主题数。核心议题(主题0、1、4)与边缘话题(主题2、3)并存,显示消退期舆情“理性沉淀与猎奇残留”的双重性。

2025-08-05 21:41:48 1577

原创 基于决策树的熬夜人群数据分析与可视化设计与实现

(3)可视化对决策树进行决策,能提高大众的健康素养,提升大众对身体健康规律的认识,提高大众对改善自身生活习惯重要性的认知度,改观大众对于熬夜情况的认识,提高大众生活质量。随着熬夜的常见性和常态化,对熬夜的研究也就显得尤为必要。使用MinMaxScaler的transform和fit_transform函数将选取的特征缩放到[0,1]范围内,首先实例化MinMaxScaler()类,并给出变换后特征的输出范围,读取数据框的第2列以后的所有数值特征(如果数据框中第一列为非数值特征,如ID)归一化后的结果如图。

2025-08-04 20:06:23 1014

原创 基于机器学习的二手房信息可视化及价格预测系统设计与实现

该页面实现基于决策树算法的房价预测功能,前端通过LayUI表单收集12项特征参数:楼层等级(高/中/低)、电梯有无、地铁有无、住宅类型(板楼/塔楼等)、装修等级(毛坯至豪华)、房屋朝向、楼层数、厅室数量、面积、关注人数。其中二手房数据采集功能,爬虫程序从安居客平台抓取房源信息,包含ID、房源名称、小区、地址、房价等字段。平台管理员、平台用户选择不同的条件筛选,如二手房房源不同地区城市、二手房的标题、小区名称、建造时间、二手房房子的标签、ID等信息,让其筛选出某个区域、城市、房价的情况,辅助用户做相关决策。

2025-08-04 19:58:52 1434

原创 基于机器学习的Web应用漏洞分析与预测系统,使用django框架,三种机器学习模型

按照年份分组获取不同年份的漏洞个数分组命令是groupby(df,“发布时间”),“发布时间”指年份,获得的结果是一个Series对象,通过map和values函数可以获取years列中的所有元素,结果是['2017','2018',‘2019’],对应的漏洞的个数可以通过count()方法获取,结果分别是['46',‘45’,‘64'],通过传递render将数据传递给salary.html模板,在该模板中可以使用这些数据绘制柱状图进行可视化分析。以柱状图的形式展示这些数据,用户便于对模型效果进行对比。

2025-08-03 22:53:12 1294

原创 基于时间序列算法的超市商品销量的分析与预测系统,采用django+echarts+ARIMA+LSTM算法

随机波动是时间序列中不可避免的一部分。表5-6的结果也显示,LSTM模型的MSE和MAE都远小于单个的ARIMA模型,说明ARIMA和LSTM的模型的拟合效果优秀。对模型进行训练,可视化训练集数据如图5-5,发现拟合效果并不是特别的好,上升趋势拟合效果不错,但是季节性的拟合效果不太理想,再将ARIMA预测得到一阶差分可视化如图5-6,同样的拟合效果一般,将拟合出来的一阶差分数据经过累加,转换到测试集数据,将测试集数据与预测数据可视化,得到图5-7,在训练集当中的问题在测试集更明显,季节性并没有很好的拟合。

2025-08-03 22:42:21 1394

原创 python高分毕设作品:基于python django的交通流量可视化分析预测系统设计,采用深度学习模型(LSTM和GRU),实现车流量预测,准确率接近95%

2.1.1 开发工具系统的设计与实现使用了多个开发工具,其中包括:MySQL:能存储和管理数据,对web系统中实现数据的增删改查,并为可视化提供数据支持,起到数据引擎的作用。PyCharm:具有较高的Python代码开发和调试效率,强大的整合能力,把不同的库整合在一起,支持定位跟踪错误,方便开发人员快速处理问题。这些开发工具的使用,系统设计、开发更加快捷和方便,对系统进行分析、呈现等。

2025-08-01 20:01:07 1287

原创 基于机器学习的健身房会员健康风险分析可视化系统,flask框架,随机森林模型实现预测

最终,实现健康风险的可视化结果(不同健康风险会员的比例、会员健康风险的变化趋势、模型预测准确度的评估),以图表方式展示不同健身会员的健康风险分布结果、各健康风险等级的范围、风险趋势分析结果(比例分布图、数据统计表),以满足健身房高、中、低健康风险用户特征提取及分类的需求,同时根据平台预测的健康风险模型结论和建议对会员进行个性化训练与指导计划提供反馈,从而在健身房管理人员的指导下,为健康风险较高的用户提供合理的干预或治疗措施以预防疾病发生,帮助健身房进行健康风险的精准化和个性化管理,提升健身房自身运营效率。

2025-08-01 19:46:42 1047

原创 基于京东评论的文本挖掘与分析,使用LSTM情感分析算法以及网络语义分析

每个关键词作为网络中的节点,其频率决定节点的大小。服务与性价比影响决策:服务维度,“客服”(2878次)、“物流”(1866次)、“售后”(591次)等词显示用户对售前咨询、配送效率及售后支持的关注,而“性价比”(1891次)、“价格”(1607次)、“赠品”(702次)则表明价格敏感度较高,需平衡产品价值与成本。应用TruncatedSVD(即潜在语义分析,LSA)降维技术,将高维的词频矩阵压缩到较低的维度(最多1000个特征),并通过Normalizer进行标准化,以便更好地捕捉词汇之间的语义关系。

2025-07-31 12:39:56 747

纵横小说网站数据采集与分析实现代码+报告

基于python的纵横中文网站数据采集与分析研究项目。其主要目的如下: 1. 了解网络小说行业的市场情况:针对纵横中文网站的各种数据进行收集、统计、分析,掌握网站中小说类别、点击量、评论数、月票数、阅读量等数据的情况,分析不同小说类别的市场状况,探究行业发展趋势。 2. 掌握读者需求和偏好:通过对读者类别、点击数等数据的分析,掌握读者对于小说作品的喜好和需求,为作家创作提供参考意见。 3. 评估小说作品质量:根据小说作品的点击量、阅读量等相关数据,建立起小说作品的质量评估系统并进行数据分析和统计。 4. 协助网站运营:根据网站数据进行各类数据分析及市场调研,协助网站运营、小说作者和阅读者制定更为准确和有效的市场推广、运营策略。 综上所述,纵横中文网站数据采集与分析研究的主要目的是为了了解网络小说行业的市场情况,掌握读者需求和偏好,并评估小说作品质量,为网站运营和小说作者提供参考意见,从而提高整个网站的服务质量和市场竞争力。可作为毕业设计或者课程设计

2024-01-29

基于Python天气动态大屏代码和数据.zip

该系统的主要功能包括:全国主要城市天气数据的采集、存储和展示、数据的可视化分析等。这些功能能够帮助用户更好地了解天气变化,提高对气象灾害的预警能力,同时也为天气研究者和爱好者提供了一个用于数据分析和可视化的平台。 该系统采用了Python语言,使用了多种数据处理和可视化库,如Pandas、echarts等。Pandas是一个常用的数据处理库,echarts是一个常用的可视化工具。这些库的选择使得我们能够快速地开发出一个功能完备、易于使用的天气数据可视化系统。 在具体实现方面,系统首先使用爬虫技术采集全国主要城市天气数据,经过处理和存储后,将这些数据通过echarts展示在前端大屏上。同时,使用Pandas库对数据进行清洗和分析,并将数据以直观的方式展示出来,帮助用户更好地理解和分析数据。此外,还绘制了全国地图,方便用户对于不同城市天气数据的比较和分析。 为了更好地帮助用户了解天气变化,还进行了数据的可视化分析。通过使用echarts可视化工具,将天气数据以柱状图、折线图、饼图等多种形式展示出来,帮助用户更好地了解天气变化趋势和规律。(可做毕业设计和课程设计)

2024-01-27

基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析的方法

介绍了基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析的方法。首先,使用Python编写程序实现微博评论的采集,通过API或爬虫方式获取相关话题下的评论数据。然后,对采集到的评论数据进行预处理,包括分词、去除停用词等操作,以准备进行情感分析。 接下来,利用情感分析技术对评论进行情感倾向性判断。可以使用自然语言处理库(如cnsenti)进行情感分析。情感分析的结果可以将评论划分为积极、消极或中立的类别,或者给出情感得分。这样可以更好地了解网友对于李佳琦的看法和态度。 最后,根据情感分析的结果,可以进一步进行统计分析和可视化呈现。可以统计不同情感类别的评论数量,并生成折线图等可视化图表,以直观展示网友对李佳琦的情感态度。

2024-01-25

基于python豆瓣电影评论的情感分析和聚类分析,聚类分析(纯算法)手肘法进行检验,情感分析用snownlp

基于python豆瓣电影评论的情感分析和聚类分析,聚类分析(纯算法,不调用库)有手肘法进行检验,情感分析用snownlp(毕业设计高分作品),可视化用matplotlib,数据分析用pandas

2024-01-24

基于Python英超足球赛的数据采集和预测,包括数据集

基于Python英超足球赛的数据采集和预测,包括数据集,适合新手学习和使用,预测包括svm等目前常用算法,有数据处理和特征选择

2024-01-25

基于Python flask MySQL的穷游网酒店数据采集与可视化大屏

基于Python Flask和MySQL的穷游网酒店数据采集与可视化大屏是一个实现酒店数据采集和展示的项目。该项目通过使用Python Flask作为后端框架,以及MySQL作为数据库管理系统,实现了对穷游网酒店数据的采集和存储,并在前端展示一个可视化的大屏。 首先,项目通过Python的Web框架Flask搭建了一个后端服务器,用于处理前端请求并进行相应的数据操作。Flask提供了路由功能,可以根据URL路径将不同的请求映射到不同的处理函数上,从而实现了数据的采集、存储和查询等功能。 其次,项目使用MySQL作为数据库管理系统,用于存储采集到的酒店数据。MySQL是一种关系型数据库,具有高效的数据存取速度和稳定性,能够满足大规模数据存储和查询的需求。通过Python的MySQL连接库,我们可以方便地进行数据库的连接、创建表、插入数据等操作。 最后,项目在前端展示了一个可视化的大屏,用于展示采集到的酒店数据。前端使用HTML、CSS和JavaScript等技术实现了数据的可视化展示,包括图表、地图等形式。通过这些可视化方式,用户可以直观地了解酒店数据的分布、价格趋势等信息

2023-09-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除