推送的优劣和原则

推送的优劣和原则

推送就是在用户没有打开app的情况下知道app内部发生了什么. 要让推送成为用户的帮手, 不仅是运营手段.

优点:

  1. 提高产品的活跃度
  2. 带动功能模块的使用率
  3. 增加用户粘度
  4. 唤醒沉睡的用户
  5. 提高留存率

缺点:

  1. 容易对用户形成打扰, 招致卸载
  2. 用户对推送变得麻木
  3. 产品丧失用户信任

推送的原则:

给推送一个理由, 为什么要推送, 你为什么要推送

给用户一个理由: 用户为什么要接收你的推送

在正确的时间推送正确的内容, 要让推送成为用户的帮手, 不仅仅是产品运营的重要手段

推送的方法:

  1. 场景化推送

    APP类型推送场景推送内容
    资讯突发事件, 吃饭时间重大头条, 本地新闻
    天气早上, 用户地里位置发生变化气象灾害, 污染, 雨天提醒
    电影周五, 优惠折扣周末观影, 热门电影
    购物处于购物街, 节日促销周边优惠信息, 秒杀, 抢红包
    健身工作日晚上, 周末运动量统计, 健身提醒
    应用市场处于wifi环境最新app推荐
    理财支付股票变化, 购物街, 年初年末金融资讯, 支付优惠, 账单
  2. 个性化推送

    不同的用户可以进行个性化的推送, 根据用户的地理位置, 渠道, 活跃度等纬度对用户分群, 从数据上提炼用户需求和使用场景, 对不同的用户群推送不同的内容, 能大幅提高消息的准确度和匹配度

推送的注意事项:

  1. 如果推送过多的话, 给推送设置入口, 如百度彩票可以设置只接收双色球和大乐透的推送消息
  2. 评价推送的效果: 到达率是多少, 点击率是多少, 这些都没有一个准确的说法, 可以有自己的一套机制
  3. 推送时间: 中午12点, 下午6点, 也不是所有用户都在这个时间进行推送, 时间也可以个性化定制
  4. 夜间推送的时候, 设置为无声的推送
  5. 推送的打开: 让用户在最短的时间内看到想要的东西, 而不是消息中心或者主页
遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值