查询逻辑:
先按条件筛选一天之内的原始数据,在原始数据上进行分桶,先按15秒分桶,求和桶内num值。
{
"query": {
"bool": {
"must": [{
"match": {
"statFunc": "onlinecount"
}
},
{
"range": {
"unixtime": {
"gt": $start_time,//时间变量
"lt": $end_time
}
}
},
{
"range": {
"num": {
"gt": 0
}
}
}
]
}
},
"from": 0,
"size": 0,
"sort": [],
"aggs": {
"time_group": {
//histogram表示分组,分组字段为unixtime,间隔为interval=15000(15秒)
"histogram": {
"field": "unixtime",
"interval": 15000
},
//再按字段field=num聚合
"aggs": {
"num_sum": {
"sum": {
"field": "num"
}
}
}
},
"max_num_sum": {
//max_bucket表示取桶内字段最大值(基于上面第2个aggs的聚合)
"max_bucket": {
//buckets_path=time_group>num_sum表示取time_group桶内num_sum字段最大值
"buckets_path": "time_group>num_sum"//类似于指示聚合的路径
}
}
}
}
//注:这里按是15秒分桶,是因为每15秒记录的数据可能有多条,因为可能存在多个大厅(每个大厅每15秒都会记录一次)
END