算法流程
- 生成1K~2K个候选区域(Selective Search方法)
- 将图像输入网络得到特征图,并将生成的候选区域投影到特征图上获得相应的特征矩阵
- 将特征矩阵通过ROI pooling层缩放到7*7大小的特征图,然后送入一系列全连接层获得预测结果
知识点
ROI Pooling Layer
将图片分成7*7个patch,对每一个patch进行最大池化下采样(Max Pooling)
分类器
输出N个类别的概率+1个背景的概率
边界框回归器
输出N+1个类别的候选边界框回归参数
边界框回归参数
多任务损失 Multi-task loss
-
分类损失
分类损失采用多分类交叉熵计算
-
边界框回归损失