【1】目标检测 Fast R-CNN

算法流程

  1. 生成1K~2K个候选区域(Selective Search方法)
  2. 将图像输入网络得到特征图,并将生成的候选区域投影到特征图上获得相应的特征矩阵
  3. 将特征矩阵通过ROI pooling层缩放到7*7大小的特征图,然后送入一系列全连接层获得预测结果
    在这里插入图片描述

知识点

ROI Pooling Layer

将图片分成7*7个patch,对每一个patch进行最大池化下采样(Max Pooling)

在这里插入图片描述

分类器

输出N个类别的概率+1个背景的概率
在这里插入图片描述

边界框回归器

输出N+1个类别的候选边界框回归参数
在这里插入图片描述

边界框回归参数

在这里插入图片描述

多任务损失 Multi-task loss

在这里插入图片描述

  • 分类损失
    分类损失采用多分类交叉熵计算
    在这里插入图片描述
    在这里插入图片描述

  • 边界框回归损失
    在这里插入图片描述

网络结构

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值