自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Talib函数功能详解(一) - Overlap Studies 重叠研究

Talib —— Overlap Studies Functions 重叠研究指标

2022-04-19 13:38:45 944

原创 Attention算法剖析——基于pytorch库

Attention机制写在前面——定义维度符号输入数据KQV矩阵机制核心attention机制写在前面——定义维度符号字母BUEHDkqDv含义batch 大小组数据长度(例如:一句话有多少个字,一时间序列包含多少天数据)数据表示维度(例如:一个字用多少维数据表示,一天数据包含多少个不同方面的数据)多头attention机制中的头数每个头中KQ矩阵用多少维数据表示每个头中V矩阵用多少维数据表示注:Dkq和Dv一般都是相等的,但是可以不相等,不影响计算过程

2021-07-08 15:25:42 1716

原创 torch.nn.Transformer

文章目录TransformerTransformerEncoderTransformerDecoderTransformerEncoderLayerTransformerDecoderLayerMultiheadAttentionTransformerdef __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedfo

2021-03-11 15:29:34 4216 14

原创 特征函数公式

文章目录离散型特征函数连续型特征函数常见分布特征函数性质定义XXX 为随机变量,其特征函数【记为 φX(v)\varphi _X(v)φX​(v)或φ(v)\varphi (v)φ(v)】φX(v)=E(eivX),v∈(−∞,+∞)\varphi_X(v)=E(e^{ivX}),v\in(-\infty,+\infty)φX​(v)=E(eivX),v∈(−∞,+∞)对于实数 v∈(−∞,+∞)v\in(-\infty,+\infty)v∈(−∞,+∞),总有 ∣eivX∣=1|e^{ivX}|

2020-11-23 13:01:47 11078

原创 概率论 —— 条件数学期望

文章目录条件数学期望离散型随机变量连续型随机变量性质条件数学期望离散型随机变量二维离散型随机变量 (X,Y)(X,Y)(X,Y),其概率分布为 P{X=xi,Y=yi}=pij,i,j=1,2,...P\{X=x_i,Y=y_i\}=p_{ij},i,j=1,2,...P{X=xi​,Y=yi​}=pij​,i,j=1,2,...边缘概率分布pi⋅=P{X=xi}=∑j=1∞pijp_{i\cdot}=P\{X=x_i\}=\sum_{j=1}^{\infty}p_{ij}pi⋅​=P{X=xi

2020-11-22 19:08:50 7320 1

原创 概率论基础

文章目录条件概率乘法公式全概率公式贝叶斯公式分布函数性质离散型随机变量连续型随机变量二维随机变量数学期望性质方差性质协方差相关系数条件概率设A,BA,BA,B为两件事,且P(A)>0P(A)>0P(A)>0,称P(B∣A)=P(AB)P(A)P(B|A)=\frac{P(AB)}{P(A)}P(B∣A)=P(A)P(AB)​为在事件AAA发生条件下事件BBB发生的条件概率。乘法公式贝叶斯公式移项即得乘法公式:设P(A)>0P(A)>0P(A)>0,则有P(

2020-11-21 18:49:26 278

原创 夏普比率 —— Python 实现

文章目录夏普比率投资预期收益率(别名:期望投资报酬率)投资标准差单个数据夏普比率实例夏普比率其数值意思为在承受单位风险的情况下,所能获取的回报。计算公式:SharpeRatio=E(RP)−RfσPSharpeRatio=\frac {E(R_P)-R_f} {\sigma _P}SharpeRatio=σP​E(RP​)−Rf​​其中,E(Rp)E(R_p)E(Rp​) 是投资预期报酬率,RfR_fRf​ 是无风险利率(常用国债利率),σP\sigma_PσP​ 是投资标准差。投资预期收益

2020-11-16 12:01:21 15608 1

原创 浅谈 pytorch 中的损失函数

nn.MSELoss() 函数均方损失函数:ℓ(x,y)=L={l1,…,ln}⊤, \ell(x, y) = L = \{l_1,\dots,l_n\}^\top, \quad ℓ(x,y)=L={l1​,…,ln​}⊤,   其中x,y分别为两个参数,多用 input 和 target 表示,而 lnl_nln​计算方式如下所示(均方损失核心部分):ln=(xn−yn)2l_n = \left( x_n - y_n \right)^2ln​=(xn​−yn​)2   函数中参数 redu.

2020-11-14 19:00:34 394

原创 Python 数据维度处理

- 三种常用数据类型之间转化list_temp=list(range(0,5))'''[0, 1, 2, 3, 4]'''array_temp=np.array(range(5,10))'''array([5, 6, 7, 8, 9])'''df_temp=pd.DataFrame([range(10,15),range(15,20)])''' 0 1 2 3 40 10 11 12 13 141 15 16 17 18 19'''list 转为 arraynp.array

2020-11-11 12:12:04 1133

原创 numpy 和 pandas 显示所有数据的方法

import nmupy as npnp.set_printoptions(threshold=np.inf)

2020-10-26 20:00:54 8844

原创 【pytorch】nn.LSTM 模块

nn.LSTM模块参数:Args:input_size: 输入值的维度hidden_size: 隐藏层的维度num_layers: 堆叠多个lstm层数,默认值:1bias: False则 b_ih=0 和 b_hh=0。默认值:Truebatch_first: 输入的数据是否构成(sequence,batch_size,feature)结构。默认值:Falsedropout: 除最后一层,每一层的输出都进行dropout,默认值: 0bidirectional:True则为双向lstm,

2020-10-17 18:57:25 1997

原创 Jupyter Notebook 更改样式

样式文件位置:anaconda环境下:\Anaconda3\Lib\site-packages\notebook\static\components\codemirror\lib虚拟环境下:\Anaconda3\envs\环境名字\Lib\sitepackages\notebook\static\components\codemirror\lib更改样式块:.CodeMirror pre.CodeMirror-line,.CodeMirror pre.CodeMirror-line-like

2020-10-15 12:22:19 935

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除