特征函数公式

定义
X X X 为随机变量,其特征函数【记为 φ X ( v ) \varphi _X(v) φX(v) φ ( v ) \varphi (v) φ(v)
φ X ( v ) = E ( e i v X ) , v ∈ ( − ∞ , + ∞ ) \varphi_X(v)=E(e^{ivX}),v\in(-\infty,+\infty) φX(v)=E(eivX)v(,+)
对于实数 v ∈ ( − ∞ , + ∞ ) v\in(-\infty,+\infty) v(,+),总有 ∣ e i v X ∣ = 1 |e^{ivX}|=1 eivX=1.
欧拉公式: e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ

离散型特征函数

概率分布: P ( X = x i ) = p k , k = 1 , 2 , 3 , . . . P(X=x_i)=p_k,k=1,2,3,... P(X=xi)=pk,k=1,2,3,...
特征函数: φ X ( v ) = E ( e i v X ) = ∑ k = 1 ∞ e i v x k p k \varphi_X(v)=E(e^{ivX})=\sum_{k=1}^{\infty}e^{ivx_k}p_k φX(v)=E(eivX)=k=1eivxkpk

连续型特征函数

概率分布: f ( x ) f(x) f(x)
特征函数: φ X ( v ) = E ( e i v X ) = ∫ − ∞ + ∞ e i v x f ( x ) d x \varphi_X(v)=E(e^{ivX})=\int_{-\infty}^{+\infty}e^{ivx}f(x)dx φX(v)=E(eivX)=+eivxf(x)dx

常见分布特征函数

分布标志概率分布特征函数
两点分布 X ∼ ( 0 − 1 ) X\sim (0-1) X(01) P ( X = K ) = p k ( 1 − p ) 1 − k , k = 0 , 1 , 0 < p < 1 P(X=K)=p^k(1-p)^{1-k},k=0,1,0<p<1 P(X=K)=pk(1p)1k,k=0,1,0<p<1 1 − p + p e i v 1-p+pe^{iv} 1p+peiv
两项分布 B ( n , p ) B(n,p) B(n,p) P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2... n , 0 < p < 1 P(X=k)=\textrm{C}_{n}^{k}p^k(1-p)^{n-k},k=0,1,2...n,0<p<1 P(X=k)=Cnkpk(1p)nk,k=0,1,2...n,0<p<1 ( p e i v + 1 − p ) n (pe^{iv}+1-p)^n (peiv+1p)n
泊松分布 X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ) P ( X = k ) = λ k e − λ k ! P(X=k)= \frac {\lambda ^k e^{-\lambda}}{k!} P(X=k)=k!λkeλ e λ ( e i v − 1 ) e^{\lambda(e^{iv}-1)} eλ(eiv1)
均匀分布 U ( a , b ) U(a,b) U(a,b) f ( x ) = { 1 b − a , a < x < b 0 , o t h e r f(x)=\left\{\begin{matrix}\frac {1}{b-a},a<x<b\\0,other\end{matrix}\right. f(x)={ba1,a<x<b0,other i ( b − a ) v ( c o s v a − c o s v b ) − ( s i n v a − s i n v b ) ( b − a ) v \frac{i}{(b-a)v}(cos va-cosvb)-\frac{(sinva-sinvb)}{(b-a)v} (ba)vi(cosvacosvb)(ba)v(sinvasinvb)
指数分布 X ∼ Z ( α ) X\sim Z(\alpha) XZ(α) f ( x ) = { α e − α x , x > 0 , α > 1 0 , x ⩽ 0 f(x)=\left\{\begin{matrix}\alpha e^{-\alpha x},x>0,\alpha>1\\0,x\leqslant0\end{matrix}\right. f(x)={αeαx,x>0,α>10,x0 α 2 α 2 + v 2 + i α v α 2 + v 2 \frac{\alpha^2}{\alpha^2+v^2}+i\frac{\alpha v}{\alpha^2+v^2} α2+v2α2+iα2+v2αv
标准正态分布 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) f ( x ) = 1 2 π e − x 2 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} f(x)=2π 1e2x2 e − v 2 2 e^{-\frac{v^2}2} e2v2

X ∼ N ( μ , σ 2 ) , φ X ( v ) = e i μ v − σ 2 v 2 2 X\sim N(\mu,\sigma^2),\varphi_X(v)= e^{i\mu v-\frac{\sigma^2v^2}2} XN(μ,σ2),φX(v)=eiμv2σ2v2

性质

  1. φ X ( 0 ) = 1 , φ X ( − v ) = φ X ( v ) ˉ \varphi_X(0)=1,\varphi_X(-v)=\bar{\varphi_X(v)} φX(0)=1,φX(v)=φX(v)ˉ
  2. Y = a X + b , φ Y ( v ) = e i b v φ X ( a v ) Y=aX+b,\varphi_Y(v)=e^{ibv}\varphi_X(av) Y=aX+b,φY(v)=eibvφX(av)
  3. X X X Y Y Y相互独立,则有 φ X + Y ( v ) = φ X ( v ) φ Y ( v ) \varphi_{X+Y}(v)=\varphi_X(v)\varphi_Y(v) φX+Y(v)=φX(v)φY(v)
  4. φ ( k ) ( 0 ) = i k E ( X k ) \varphi^{(k)}(0)=i^kE(X^k) φ(k)(0)=ikE(Xk)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值