优先级队列(堆实现)

优先级队列是一种根据重要性优先处理元素的数据结构。本文介绍了使用数组存储的完全二叉树形式来实现堆,包括大顶堆和小顶堆的概念。堆的基本操作包括寻找最值,以及堆的向下和向上调整。堆被广泛应用于优先级队列,其中插入、删除和判空等操作通过堆的特性得以高效实现。
摘要由CSDN通过智能技术生成

优先级队列
概念
一般来说我们会根据事情的重要程度优先处理某事,比如完成学习任务和刷微博,我们会认为完成学习任务比较重要,因此会先执行它,因此在这种情况下,数据结构就应提供两个基本的操作,一是返回最高优先级对象,二是添加新的对象,这种数据结构就叫做优先级队列。
二叉树的顺序存储
存储方式
使用数组保存二叉树结构,即利用层序遍历方式放入数组中。
一般只适合表示完全二叉树,因为非完全二叉树会有空间的浪费。
而这种表示方法一般的用法就是堆的表示。

堆的概念:

  • 堆在逻辑上是一颗完全二叉树
  • 堆在物理上保存在数组中
  • 满足任意节点的值都大于其子树中节点的值叫做大顶堆
  • 满足任意节点的值都小于其子树中结点的值叫做小顶堆
  • 堆的基本作用是寻找集合中的最值

顺序存储时的下标关系
已知父结点(parent)的下标,则

  • 左孩子节点下标为 parent * 2 + 1;
  • 右孩子节点下标为 parent * 2 + 2;

已知孩子节点的下标,则

  • 父结点的下标为 (child - 1) / 2;

堆的向下调整
前提:左右子树必须已经是一个堆才能调整
此操作常用于优先队列的出队操作后的排序
以大顶堆为例:

  • array 代表进行操作的堆
  • size 代表堆节点的个数
  • index 代表操作的节点
public void shiftDown(int[] array,int size,int index) {
   
        //记录父节点位置
        int parent = index;
        //计算左子树的位置
        int child = index * 2 + 1;
        //当子树下标超过或等于数组长度时即为操作结束
        while(child < size) {
   
            //首先比较左子树和右子树谁的值比较大,如果右子树存在并且右子树的值大于左子树则替换child
            if(child + 1 < size && array[child + 1] > array[child]) {
   
                child = child + 1;
            }
            //然后比较子树和父结点谁的值较大,如果子树的值大则将父节点的值和子树节点的值交换
            if(array[child] > array[parent]) {
   
                int tmp = array[child];
                array[child] = array[parent];
                array[parent] = tmp;
            //由于比较此父结点之前,其左子树和右子树都已满足堆的性质(大顶堆就是任意节点的值都要大于其子树中节点的值
            // 小顶堆是任意节点的值都要小于其左右子树节点的值),所以如果此时父结点的值比其左右节点的值都要大则不用向下比较
            }else 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值