优先级队列
概念
一般来说我们会根据事情的重要程度优先处理某事,比如完成学习任务和刷微博,我们会认为完成学习任务比较重要,因此会先执行它,因此在这种情况下,数据结构就应提供两个基本的操作,一是返回最高优先级对象,二是添加新的对象,这种数据结构就叫做优先级队列。
二叉树的顺序存储
存储方式
使用数组保存二叉树结构,即利用层序遍历方式放入数组中。
一般只适合表示完全二叉树,因为非完全二叉树会有空间的浪费。
而这种表示方法一般的用法就是堆的表示。
堆
堆的概念:
- 堆在逻辑上是一颗完全二叉树
- 堆在物理上保存在数组中
- 满足任意节点的值都大于其子树中节点的值叫做大顶堆
- 满足任意节点的值都小于其子树中结点的值叫做小顶堆
- 堆的基本作用是寻找集合中的最值
顺序存储时的下标关系
已知父结点(parent)的下标,则
- 左孩子节点下标为 parent * 2 + 1;
- 右孩子节点下标为 parent * 2 + 2;
已知孩子节点的下标,则
- 父结点的下标为 (child - 1) / 2;
堆的向下调整
前提:左右子树必须已经是一个堆才能调整
此操作常用于优先队列的出队操作后的排序
以大顶堆为例:
- array 代表进行操作的堆
- size 代表堆节点的个数
- index 代表操作的节点
public void shiftDown(int[] array,int size,int index) {
//记录父节点位置
int parent = index;
//计算左子树的位置
int child = index * 2 + 1;
//当子树下标超过或等于数组长度时即为操作结束
while(child < size) {
//首先比较左子树和右子树谁的值比较大,如果右子树存在并且右子树的值大于左子树则替换child
if(child + 1 < size && array[child + 1] > array[child]) {
child = child + 1;
}
//然后比较子树和父结点谁的值较大,如果子树的值大则将父节点的值和子树节点的值交换
if(array[child] > array[parent]) {
int tmp = array[child];
array[child] = array[parent];
array[parent] = tmp;
//由于比较此父结点之前,其左子树和右子树都已满足堆的性质(大顶堆就是任意节点的值都要大于其子树中节点的值
// 小顶堆是任意节点的值都要小于其左右子树节点的值),所以如果此时父结点的值比其左右节点的值都要大则不用向下比较
}else