title: LeetCode No.60
categories:
- OJ
- LeetCode
tags:
- Programing
- LeetCode
- OJ
LeetCode第六十题
自己代码的开源仓库:click here 欢迎Star和Fork 😃
题目描述
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
示例 1:
输入:n = 3, k = 3
输出:"213"
示例 2:
输入:n = 4, k = 9
输出:"2314"
示例 3:
输入:n = 3, k = 1
输出:"123"
提示:
1 <= n <= 9
1 <= k <= n!
代码
回溯法超时版本
理论剪去达到k之后所有循环应该不会超时的,但还是超时了。
from goto import with_goto
class Solution(object):
# 计数菌
jishuqi = 0
def getPermutation(self, n, k):
"""
:type n: int
:type k: int
:rtype: str
核心思想:这里Python有现成的库可以进行,但是为了能够掌握代码,这里我使用回溯法进行编写代码
然后返回第k个结果
回溯法的框架:
def backtrack(path, selected):
if 满足停止条件:
res.append(path)
for 选择 in 选择列表:
做出选择
递归执行backtrack
满足则return True
如果不满足要求就撤销选择
"""
result = []
temp = []
nums = [i+1 for i in range(n)]
def backtrack(nums,k):
if self.jishuqi == k:
return
if not nums: # 如果为空则表示选择完毕
if nums in result:
return False
else:
self.jishuqi += 1
result.append(temp[:])
return True
for i in range(len(nums)):
# 做出选择
temp.append(nums[i])
# 去除做出的选择
tt = nums[:i] + nums[i + 1:]
# 接着执行选择
backtrack(tt,k)
# 撤销选择
temp.pop()
backtrack(nums,k)
res = ''
for i in range(len(result[-1])):
res += str(result[-1][i])
return res
if __name__ == '__main__':
s = Solution()
print(s.getPermutation(n=9,k=54994))
参考大佬的做法
class Solution:
def getPermutation(self, n: int, k: int) -> str:
s, k, res = list(range(1, n+1)), k-1, ""
for i in range(len(s)-1, -1, -1):
res, s, k = res+str(s[k // factorial(i)]), s[:k // factorial(i)]+s[k // factorial(i)+1:], k % factorial(i)
return res