LeetCode第六十题—Python实现


title: LeetCode No.60

categories:

  • OJ
  • LeetCode

tags:

  • Programing
  • LeetCode
  • OJ

LeetCode第六十题

自己代码的开源仓库:click here 欢迎Star和Fork 😃

题目描述

给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

"123"
"132"
"213"
"231"
"312"
"321"

给定 n 和 k,返回第 k 个排列。

示例 1:

输入:n = 3, k = 3
输出:"213"
示例 2:

输入:n = 4, k = 9
输出:"2314"
示例 3:

输入:n = 3, k = 1
输出:"123"
 

提示:

1 <= n <= 9
1 <= k <= n!

代码

回溯法超时版本

理论剪去达到k之后所有循环应该不会超时的,但还是超时了。

from goto import with_goto
class Solution(object):
    # 计数菌
    jishuqi = 0
    def getPermutation(self, n, k):
        """
        :type n: int
        :type k: int
        :rtype: str

        核心思想:这里Python有现成的库可以进行,但是为了能够掌握代码,这里我使用回溯法进行编写代码
                然后返回第k个结果

        回溯法的框架:
            def backtrack(path, selected):
                if 满足停止条件:
                    res.append(path)
                for 选择 in 选择列表:
                    做出选择
                    递归执行backtrack
                        满足则return True
                    如果不满足要求就撤销选择
        """
        result = []
        temp = []
        nums = [i+1 for i in range(n)]
        def backtrack(nums,k):
            if self.jishuqi == k:
                return
            if not nums:  # 如果为空则表示选择完毕
                if nums in result:
                    return False
                else:
                    self.jishuqi += 1
                    result.append(temp[:])
                    return True
            for i in range(len(nums)):
                # 做出选择
                temp.append(nums[i])
                # 去除做出的选择
                tt = nums[:i] + nums[i + 1:]
                # 接着执行选择
                backtrack(tt,k)
                # 撤销选择
                temp.pop()

        backtrack(nums,k)
        res = ''
        for i in range(len(result[-1])):
            res += str(result[-1][i])
        return res

if __name__ == '__main__':
    s = Solution()
    print(s.getPermutation(n=9,k=54994))

参考大佬的做法

class Solution:
    def getPermutation(self, n: int, k: int) -> str:
        s, k, res = list(range(1, n+1)), k-1, ""
        for i in range(len(s)-1, -1, -1):
            res, s, k = res+str(s[k // factorial(i)]), s[:k // factorial(i)]+s[k // factorial(i)+1:], k % factorial(i)
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

StriveZs

用爱发电

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值