高斯模糊(高斯滤波)原理以及计算过程

高斯模糊/高斯滤波

通常,图像处理软件会提供模糊滤镜,使图片产生模糊效果。

figure.1

模糊的算法有很多,其中有一种叫高斯模糊(Gaussian Blur),它将正态分布用于图像处理。
文本介绍了高斯模糊的算法,你会看到这是一个非常简单易懂的算法。本质上,它是一种数据平滑技术(data smoothing),适用于多个场合,图像处理恰好提供了一个直观的应用实例。

高斯模糊的原理

所谓模糊,可以理解成每一个像素都取周边像素的平均值。

figure.2

上图中,2是中间点,周边点都是1.

figure.3

中间点取周围点的平均值之后,就会从2变成了1.在数值上,这是一种平滑化。在图形上,就相当于产生模糊的效果,中间点失去了细节。

figure.4

显然计算平均值时,取值范围越大,模糊效果越强烈。

figure.5

上面分别是原图、模糊半径3像素,模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度来看,就是数值越平滑。

接下来的问题是,既然每个点都要取周边像素的平均值,那么该如何分配权重呢?
如果使用简单平均,显然是不合理的,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系就越疏远。因此,加权平均更合理,距离越近的点,权重就越大,距离越远的点,权重就越小。

正态分布的权重

正态分布显然是一种可取的权重分配模式。

figure.6

在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。
计算平均值的时候,我们只需要将中心点作为原点,其他点按照其在正态曲线上的位置,分配权重就可以得到一个加权平均值。

高斯函数

上面的正态分布是一维的,但是图像都是二维的,因此我们需要二维的正态分布。

figure.7

正态分布的密度函数叫做高斯函数,下面是一维高斯函数的公式:

G ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 G(x)=\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} G(x)=2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

StriveZs

用爱发电

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值