LHUC 模型内部差异化

这篇博客探讨了Learning Hidden Unit Contributions (LHUC)方法在处理混合数据源的模型训练中的应用,通过将数据源差异性引入神经网络以优化模型适应性。同时,文中提及了超越Google的快手公司成功落地了业界首个万亿参数的推荐模型,展示了大规模模型在精准推荐领域的突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值