368chen
码龄10年
关注
提问 私信
  • 博客:254,911
    254,911
    总访问量
  • 195
    原创
  • 1,889,110
    排名
  • 41
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-06-08
博客简介:

qq_16236875的博客

查看详细资料
个人成就
  • 获得97次点赞
  • 内容获得21次评论
  • 获得672次收藏
创作历程
  • 37篇
    2020年
  • 160篇
    2019年
成就勋章
TA的专栏
  • python
    6篇
  • 大数据
    17篇
  • 比赛
    4篇
  • linux和服务器
    2篇
  • 图像分类
    19篇
  • 机器学习
    78篇
  • 数据结构与算法
    8篇
  • 项目-深度学习
    48篇
  • 数理统计
    2篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

caffe 学习

caffe 教程:https://www.cnblogs.com/denny402/p/5067265.htmlcaffe 编译安装:https://www.cnblogs.com/denny402/p/5067265.htmlcaffe conda 安装:https://blog.csdn.net/weixin_39916966/article/details/93221564问题解决caffe 报错:https://blog.csdn.net/weixin_38883095/ar
原创
发布博客 2020.11.06 ·
214 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

siamase -network

siamase 是 一种神经网络的框架,而不是具体的某种网络,就像seq2seq 一样,具体实现上可以使用RNN 也可以使用CNN,两个子网络共享权值。网络将输入映射到新的空间,形成输入在新的空间中的表示。正向传递:1 不再使用softmax 多分类,把图片encoding 一个长vector2 图片相似性:不同vector 的相似性对比。3 相似方程由两部分构成: similarity function=encoding f0 + vector 之间的distanceref:http.
原创
发布博客 2020.10.22 ·
513 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

层次贝叶斯模型

1 概念:层次贝叶斯模型是具有结构化层次的统计模型,它可以用来为复杂的统计问题建立层次模型从而避免参数过多导致的过拟合问题。通过贝叶斯方法来估计后验分布的参数。2 推断过程:我们对层次贝叶斯推断的策略与一般的多参数问题一样,但由于在实际中层次模型的参数很多,所以比较困难,在实际中我们很难画出联合后联合概率分布的图形。但是可以使用近似的基于仿真的方法.运用层次贝叶斯模型主要需要计算所有参赛在已知观察量下的条件后验概率,其推导过程主要包含三个步骤:1)写出联合后验密度,p(θ, φ|y),.
原创
发布博客 2020.10.22 ·
8239 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

Vision Transformer 论文

https://openreview.net/pdf?id=YicbFdNTTyAN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALEAbstract:Transformer 架构早已在自然语言处理任务中得到广泛应用,但在计算机视觉领域中仍然受到限制。在计算机视觉领域,注意力要么与卷积网络结合使用,要么用来代替卷积网络的某些组件,同时保持其整体架构不变。该研究表明,对 CNN 的依赖不是必需的,当直
原创
发布博客 2020.10.08 ·
35946 阅读 ·
36 点赞 ·
9 评论 ·
259 收藏

MobileNetV2 论文

https://arxiv.org/abs/1801.04381Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and SegmentationAbstract本文提出了一种新的移动架构MobileNetv2,改善了多个任务和基准的State-of-the-art水平。同时我们介绍了一种基于此框架的面向目标检测任务的有效应用模型SSDLite。此外,我们介绍了简化移动
原创
发布博客 2020.10.08 ·
2122 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

MobileNet v1 论文

https://arxiv.org/pdf/1704.04861.pdfSummary:总的来说,MobileNet相对于标准卷积过程有以下几点不同:1) 将标准的卷积操作分为两步:depthwise convolution和pointwise convolution。即先分解卷积滤波,再用1x1的卷积连接起来。通过文中的计算复杂度可以看出MobileNet的计算量降低了很多。2) 引入了两个超参数:width multiplier和resolution multiplier。这两个超参数的
原创
发布博客 2020.10.06 ·
470 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

驱动重装

https://zhuanlan.zhihu.com/p/82521884
原创
发布博客 2020.09.17 ·
144 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

sklearn 中指标计算公式

TP:正例预测正确的个数FP:负例预测错误的个数TN:负例预测正确的个数FN:正例预测错误的个数1. accuracy_score(y_true,y_pred)准确率(accuracy)是所有预测对的right/all例子:>>>y_pred = [0, 2, 1, 3]>>>y_true = [0, 1, 2, 3]>>>accuracy_score(y_true, y_pred)0.52.prec...
原创
发布博客 2020.08.13 ·
1743 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch-固定某些层参数不训练

ref:https://blog.csdn.net/Arthur_Holmes/article/details/103493886
原创
发布博客 2020.08.07 ·
3359 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

nn.Module -使用Module 类来自定义网络

1 前言: 如何自定义一个模型-通过继承nn.Module 类来实现,在__init__ 构造函数中申明各个层的定义,在forward 中实现层直接的连接关系,实际上就是前向传播的过程。实际上,在pytorch 里面自定义层也是通过继承nn.Module 类来实现,pytorch 里面一般没有层的概念,层也是当成一个模型来处理的。2 torch 里面实现神经网络有两种方法:(1) 高层API 方式: 高层API 是使用类的形式来包装的,类可以存储参数,例如全连接层的权重值矩阵,偏置矩阵等都可以作
原创
发布博客 2020.08.06 ·
687 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

@property 装饰器

https://www.liaoxuefeng.com/wiki/897692888725344/923030547069856
原创
发布博客 2020.08.06 ·
131 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Mobilenet 网络结构-Depthwise Separable Convoltion

1)常规卷积运算假设输入层为一个大小为64×64 像素,三通道的彩色图片。经过一个包含4个filter 的卷积层,最终输出4个Feature Map,并且尺寸与输入层相同。此时卷积层共4个filter,每个filter 包含3个kernel,每个kernel的大小为3×3,因此卷积层的参数量如下计算:N_std=4×3×3×3×3=1082 Separable Convolution核心思想是将一个完整的卷积运算分解为两步,分别为Depthwise Convolution 与Poi.
原创
发布博客 2020.08.06 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

CS231N斯坦福计算机视觉公开课笔记

p6 可视化卷积神经网络: 导向反向传播让轮廓更明显,找到识别最大的原始图像p9 : CNN 网络工程的实践技巧,,3*3 卷积,步长为1 ,padding =1 使得feature map 维度不变。两个3*3 替换一个5*5 ,感受野相同,可以减少参数,非线性变换的次数增多。输入H*W*C,C是通道数,要C个卷积核,卷积核大小是7*7,参数是7*7*C*C,3个3*3 来代替,参数是3*3*C*C乘法运算量: feature map 元素数* 每次卷积感受野数量: (H*W*C)*(7.
原创
发布博客 2020.08.02 ·
279 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测-评估标准

常用: 平均精度均值 mAP,交并比 IoU,非极大值抑制 NMS, 每秒帧频FPS(每秒处理的图片数量)1 AP:代表平均精度,是PR 曲线下的面积,分类器分类效果越好,AP 越大。mAP:多类别的AP 的平均值,mean 代表对每个类别下得到的AP 再求平均。mAP 的取值范围为[0,1],值越大越好。mAP 涉及到的相关概念: 混淆矩阵:TP,FP,FN,TN,Precision,Recall。F1-score 是precision和recall 的调和均值:即 2/F1=1/Pr
原创
发布博客 2020.07.28 ·
705 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SSD 原理-1

ref:https://blog.csdn.net/qianqing13579/article/details/82106664预测阶段有两种滑动窗口的策略:1 策略1: 使用不同大小的滑动窗口,对每个滑动窗口提取特征并分类判断是否是人脸,最后经过NMS 得到最后的检测结果,本文的SSD 本质上就是这种策略,不同检测层的anchor 就类似于不同大小的滑动窗口。2 策略2:构造图像金字塔,只使用一种大小的滑动窗口在所有的金字塔图像上滑动,对每个滑动窗口提取特征并判断是否是人脸,最后经过NMS 得
原创
发布博客 2020.07.24 ·
309 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

kaggle:iMet Collection 2019 - FGVC6

1 评估指标f2 score=2 训练集与109237 张,测试集分为两个阶段,第一个阶段7443 张,第二阶段是unseen的,大小5.2 倍于test1.3 数据分析3.1 类别总数:1103 类,其中culture 有398 类,tag 有705 类3.2 每张图像所含类别个数:1~11 ,大多数图像含有2-3个标签,但是有张图像含有11个。3.3 前20的label 中的culture 和tag 分别占了整个数据集的0.72%和1.83% ,这说明大多数label 是所出现次
原创
发布博客 2020.06.29 ·
381 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

比赛总结

1https://cloud.tencent.com/developer/article/1505687
原创
发布博客 2020.06.26 ·
279 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LSTM 时间序列预测

1 LSTM客流量预测:https://zhuanlan.zhihu.com/p/94757947
原创
发布博客 2020.06.24 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

基于VAE 利用重建概率的异常检测

1 VAE和AE的区别AE 将输入变量直接编码成隐藏层变量,再解码成输出变量,VAE 也有编码和解码过程,但VAE将输入变量"编码" 成隐变量的分布,再从隐变量分布采样,将隐变量分布解压成输出变量的分布。网络学习目标变成使变量的分布函数逼近真实的分布函数,这个问题的求解需要采用变分方法,因此取名变分自编码器。2 VAE 的loss摘要: 本文提出了一种利用变分自动编码器重构概率的异常检测方法,https://www.cnblogs.com/asawang/p/10407551.html..
原创
发布博客 2020.06.23 ·
2109 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Hadoop 编程

处理1 select: 直接分析输入数据,取出需要的字段数据即可2.where :也是对输入数据处理的过程进行处理,判断是否需要该数据3. aggregation :min,max,sum4.group by : 通过Reducer 实现5.sort6.join:map join ,reduce join...
原创
发布博客 2020.05.24 ·
174 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多