# pytorch学习-torch.nn.BCELoss（）和torch.nn.BCEWithLogitsLoss（）

### class torch.nn.BCELoss(weight=None, size_average=True, reduce=True)

• 作用：

$l(x,y)=L=\left \{ l_{1},...,l_{N} \right \}^{T}$

$l_{n}=-w_{n}[y_{n}*logx_{n}+(1-y_{n})*log(1-x_{n})]$

N :batchsize

l(x,y)=mean(L),if size_average=True
l(x,y)=sum(L),if size_average=False


targets y的值是在0和1之间

• 参数
weight(Tensor,optional) - 每个batch 元素的权重.
size_average- 默认为True.
True,losses 在minibatch 结合weight 求平均average.
False,losses 在minibatch 求相加和sum.

reduce 默认为True
True,losses 在minibatch 求平均或相加和
False,losses 返回per input/target 元素值, 并忽略size_average


• 示例
import torch
import torch.nn as nn
sig = nn.Sigmoid()
loss = nn.BCELoss()
target = torch.empty(3).random_(2)
output = loss(sig(input), target)
output.backward()


### class torch.nn.BCEWithLogitsLoss(weight=None, size_average=True, reduce=True)

• 作用

$l(x,y)=L=\left \{ l_{1},...,l_{N} \right \}^{T}$

$l_{n}=-w_{n}[t_{n}*log\sigma (x_{n})+(1-t_{n})*log(1-\sigma (x_{n}))]$

l(x,y)=mean(L),if size_average=True
l(x,y)=sum(L),if size_average=False


target t[i] 的值是0 和1 之间的数值.

• 参数
weight(Tensor,optional) - 每个batch 元素的权重.
size_average- 默认为True.
True,losses 在minibatch 结合weight 求平均average.
False,losses 在minibatch 求相加和sum.

reduce 默认为True
True,losses 在minibatch 求平均或相加和
False,losses 返回per input/target 元素值, 并忽略size_average



03-28 1万+
07-25
06-14 1911
02-27 1万+
04-24
08-20 3万+