文章目录
面对大模型上下文窗口限制的挑战,以下是系统化的工程解决方案,涵盖从架构设计到具体实现的各个层面:
1. 分层处理架构
1.1 分块处理流水线
代码实现:
class ChunkProcessor:
def __init__(self, chunk_size=512, overlap=64):
self.chunk_size = chunk_size
self.overlap = overlap
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
def semantic_chunking(self, text):
# 基于句子边界的分块
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_len = 0
for sent in sentences:
sent_len = len(word_tokenize(sent))
if current_len + sent_len > self.chunk_size and current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = current_chunk[-self.overlap:] if self.overlap else []
current_len = sum(len(word_tokenize(s)) for s in current_chunk)
current_chunk.append(sent)
current_len += sent_len
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def select_key_chunks(self, chunks, query_embedding, top_k=3):
chunk_embeddings = self.embedder.encode(chunks)
similarities = cosine_similarity([query_embedding], chunk_embeddings)[0]
top_indices = np.argsort(similarities)[-top_k:][::-1]
return [chunks[i] for i in top_indices]
2. 记忆管理机制
2.1 分级记忆系统
实现代码:
class MemoryManager:
def __init__(self):
self.working_memory = deque(maxlen=5) # 最近5轮对话
self.short_term = FAISSIndex() # 最近1小时对话
self.long_term = PostgreSQLKnowledgeBase()
def retrieve_relevant(self, query, time_weight=0.3, semantic_weight=0.7):
# 综合时间和语义相关性
recent_items = self.short_term.search(query, top_k=5)
knowledge_items = self.long_term.search(query, top_k=5)
scored_items = []
for item in recent_items + knowledge_items:
time_score = 1 - (time.now() - item.timestamp).total_seconds()/3600
semantic_score = item.similarity
total_score = (time_weight * time_score +
semantic_weight * semantic_score)
scored_items.append((total_score, item))
return sorted(scored_items, reverse=True)[:10]
3. 动态上下文压缩
3.1 关键信息提取算法
def compress_context(text, compression_ratio=0.3):
# 使用LLM提取关键信息
prompt = f"""将以下文本压缩为原长度的{compression_ratio*100}%,保留核心事实和意图:
原文:{text}
压缩版本:"""
compressed = llm.generate(prompt, max_tokens=int(len(text.split())*compression_ratio))
return compressed
# 结合摘要和实体保留
def hybrid_compression(text):
entities = extract_entities(text) # 命名实体识别
summary = abstractive_summarize(text) # 生成式摘要
return f"{summary}\n关键实体:{', '.join(entities)}"
4. 外部知识检索
4.1 检索增强生成(RAG)架构
实现代码:
class RAGSystem:
def __init__(self):
self.retriever = DenseRetriever('msmarco-distilbert-base-v3')
self.generator = LLM('gpt-4')
self.index = FAISS.load_index('knowledge_index')
def answer(self, question):
# 多模态检索
query_embed = self.retriever.encode(question)
docs = self.index.search(query_embed, k=5)
# 重排序
ranked_docs = self.rerank(question, docs)
# 生成回答
context = "\n".join(doc.text for doc in ranked_docs[:3])
prompt = f"""基于以下上下文回答问题:
{context}
问题:{question}
答案:"""
return self.generator.generate(prompt)
5. 递归处理策略
5.1 层次化摘要流程
def hierarchical_summarization(text, target_length, chunk_size=2000):
if len(text) <= target_length:
return text
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
summaries = []
for chunk in chunks:
summary = llm.generate(f"用1-2句话总结以下内容:\n{chunk}")
summaries.append(summary)
combined = ' '.join(summaries)
return hierarchical_summarization(combined, target_length, chunk_size)
6. 混合索引策略
6.1 多粒度索引设计
class HybridIndex:
def __init__(self):
self.keyword_index = WhooshIndex() # 精确匹配
self.vector_index = FAISSIndex() # 语义搜索
self.entity_graph = Neo4jGraph() # 关系查询
def search(self, query):
# 并行查询
keyword_results = self.keyword_index.search(query)
vector_results = self.vector_index.search(query)
entity_relations = self.entity_graph.query(extract_entities(query))
# 融合结果
combined = self.merge_results(
keyword_results,
vector_results,
entity_relations
)
return combined[:10] # 返回Top10
7. 实时上下文管理
7.1 动态上下文窗口
class DynamicContextWindow {
constructor(maxTokens = 8000) {
this.maxTokens = maxTokens;
this.contextBuffer = [];
this.currentTokens = 0;
}
addMessage(role, content) {
const tokens = estimateTokens(content);
const newItem = { role, content, tokens };
// 确保不超过限制
while (this.currentTokens + tokens > this.maxTokens && this.contextBuffer.length > 0) {
const removed = this.contextBuffer.shift();
this.currentTokens -= removed.tokens;
}
this.contextBuffer.push(newItem);
this.currentTokens += tokens;
}
getCompressedContext() {
if (this.currentTokens <= this.maxTokens) {
return this.contextBuffer;
}
// 实施压缩策略
return this.applyCompression();
}
applyCompression() {
// 1. 移除最旧的普通消息
const important = this.contextBuffer.filter(m => m.role === 'system');
const regular = this.contextBuffer.filter(m => m.role !== 'system');
while (this.currentTokens > this.maxTokens && regular.length > 0) {
const removed = regular.shift();
this.currentTokens -= removed.tokens;
}
// 2. 压缩剩余消息
return [...important, ...regular.map(m => ({
...m,
content: compressMessage(m.content)
}))];
}
}
8. 评估与优化指标
8.1 性能评估矩阵
方案 | 最大上下文 | 延迟 | 成本 | 信息保留率 |
---|---|---|---|---|
分块处理 | 无限 | 中 | 低 | 75-85% |
记忆网络 | 10x窗口 | 低 | 中 | 90%+ |
动态压缩 | 5x窗口 | 高 | 高 | 60-70% |
外部检索 | 无限 | 中 | 中 | 依检索质量 |
9. 前沿技术方向
9.1 稀疏注意力优化
class SparseAttentionWrapper(nn.Module):
def __init__(self, original_attention, sparsity=0.3):
super().__init__()
self.original = original_attention
self.sparsity = sparsity
def forward(self, Q, K, V):
# 计算注意力分数
scores = torch.matmul(Q, K.transpose(-2, -1))
# 创建稀疏掩码
top_k = int(scores.size(-1) * (1 - self.sparsity))
top_values, _ = torch.topk(scores, k=top_k, dim=-1)
threshold = top_values[..., -1:]
mask = scores >= threshold
# 应用稀疏注意力
sparse_scores = torch.where(mask, scores, torch.full_like(scores, -1e10))
return self.original._forward(sparse_scores, V)
10. 系统选型建议
10.1 场景化解决方案
-
文档分析场景:
- 分块处理 + 层次化摘要
- 配合向量数据库检索
-
长对话系统:
- 分级记忆管理
- 动态上下文压缩
-
实时问答系统:
- RAG架构
- 混合索引策略
-
代码理解场景:
- 语法树辅助分块
- 基于符号的检索
通过组合这些工程解决方案,可以有效突破大模型上下文窗口的限制,在保持性能的同时处理超长文本内容。实际实施时应根据具体场景需求选择合适的技术组合,并通过AB测试验证效果。