文章目录
一、项目背景与需求分析
核心需求:
- 多终端考试接入(Web/移动端)
- 实时音视频监控(1080P/30fps)
- AI异常行为检测(人脸识别、动作分析)
- 防作弊机制(屏幕共享检测、切屏监控)
- 考试数据加密存储
技术挑战:
- 高并发视频流处理
- 低延迟通信保障
- 敏感数据隐私保护
- 复杂作弊场景识别
二、系统架构设计
2.1 整体架构图
2.2 技术栈选型
模块 | 技术方案 |
---|---|
前端 | React + TypeScript + WebRTC |
后端 | Spring Boot + Python(AI模块) |
数据库 | MySQL + Redis + MinIO |
实时通信 | WebSocket + Socket.IO |
视频处理 | FFmpeg + OpenCV |
AI框架 | TensorFlow + MediaPipe |
安全 | JWT + AES + 数字水印 |
三、核心模块实现
3.1 前端监控模块
关键代码(React+WebRTC):
// 摄像头监控组件
const CameraMonitor = () => {
const videoRef = useRef<HTMLVideoElement>(null);
useEffect(() => {
navigator.mediaDevices.getUserMedia({
video: { width: 1280, facingMode: "user" },
audio: true
}).then(stream => {
if (videoRef.current) {
videoRef.current.srcObject = stream;
// 视频流处理(关键帧抽取)
const mediaRecorder = new MediaRecorder(stream, {
mimeType: 'video/webm;codecs=vp9',
videoBitsPerSecond: 2500000
});
mediaRecorder.ondataavailable = handleVideoData;
}
});
}, []);
return <video ref={videoRef} autoPlay muted />;
};
3.2 后端监考服务
Spring Boot人脸识别接口:
@PostMapping("/face/verify")
public ResponseEntity<?> verifyFace(
@RequestParam("liveImage") MultipartFile liveImage,
@RequestParam("idCardImage") MultipartFile idCardImage) {
// 使用OpenCV进行特征比对
Mat liveMat = Imgcodecs.imdecode(new ByteArrayBuffer(liveImage.getBytes()),
CV_LOAD_IMAGE_COLOR);
Mat idMat = Imgcodecs.imdecode(new ByteArrayBuffer(idCardImage.getBytes()),
CV_LOAD_IMAGE_COLOR);
double similarity = FaceComparator.compareFaces(liveMat, idMat);
return similarity > 0.85 ? OK : BAD_REQUEST;
}
四、考试安全课题研究
4.1 常见作弊手段及防御
作弊类型 | 检测方案 | 实现技术 |
---|---|---|
替考代考 | 活体检测+证件比对 | OpenCV+LivenessDetection |
屏幕共享 | 鼠标轨迹分析+窗口焦点监控 | Electron desktopCapturer |
答案抄袭 | 文本相似度分析+答题时间监控 | NLP+Timeline Analysis |
环境异常 | 背景音识别+多摄像头扫描 | WebAudio API+MediaDevices |
4.2 安全增强方案
-
数据传输安全:
- 使用SRTP协议加密视频流
- 考试数据AES-256-GCM加密
# Python加密示例 from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes def encrypt_data(data: bytes, key: bytes) -> bytes: iv = os.urandom(12) encryptor = Cipher( algorithms.AES(key), modes.GCM(iv) ).encryptor() ct = encryptor.update(data) + encryptor.finalize() return iv + ct + encryptor.tag
-
防题目泄露:
- 动态水印技术(考生信息+时间戳)
- 题目分片加载(按需获取)
五、系统流程图
5.1 考试流程时序图
5.2 作弊检测流程图
六、部署与优化
- 服务器配置:
- 使用Kubernetes进行容器化部署
- Nginx负载均衡+RTMP流媒体服务器
- 性能优化:
- 视频流自适应码率(ABR)
- WebAssembly加速AI推理
// OpenCV WASM处理示例 EMSCRIPTEN_BINDINGS(Module) { function("processFrame", &processFrame); }
七、未来改进方向
- 区块链存证技术
- 多模态行为分析(语音+表情)
- 联邦学习提升模型泛化能力