文章目录
在实际开发中,我们经常需要将扁平的数据结构(如数据库查询结果)转换为树形结构(如菜单、评论回复等)。本文将详细介绍多种实现方法,并提供完整的代码示例。
一、理解数据结构
1. 扁平数据结构示例
const flatData = [
{ id: 1, name: '部门1', parentId: 0 },
{ id: 2, name: '部门2', parentId: 1 },
{ id: 3, name: '部门3', parentId: 1 },
{ id: 4, name: '部门4', parentId: 3 },
{ id: 5, name: '部门5', parentId: 3 },
{ id: 6, name: '部门6', parentId: 0 },
];
2. 期望的树形结构
[
{
id: 1,
name: '部门1',
children: [
{
id: 2,
name: '部门2'
},
{
id: 3,
name: '部门3',
children: [
{ id: 4, name: '部门4' },
{ id: 5, name: '部门5' }
]
}
]
},
{
id: 6,
name: '部门6'
}
]
二、实现方法
方法1:递归实现(经典算法)
function buildTree(items, parentId = 0) {
const result = [];
for (const item of items) {
if (item.parentId === parentId) {
const children = buildTree(items, item.id);
if (children.length) {
item.children = children;
}
result.push(item);
}
}
return result;
}
const treeData = buildTree(flatData);
console.log(JSON.stringify(treeData, null, 2));
优点:
- 逻辑清晰直观
- 适合理解树形结构的构建过程
缺点:
- 时间复杂度较高(O(n^2))
- 大数据量时性能较差
方法2:使用对象引用(高效算法)
function buildTreeOptimized(items) {
const itemMap = {};
const result = [];
// 首先构建哈希映射
for (const item of items) {
itemMap[item.id] = { ...item, children: [] };
}
// 构建树结构
for (const item of items) {
const node = itemMap[item.id];
if (item.parentId === 0) {
result.push(node);
} else {
if (itemMap[item.parentId]) {
itemMap[item.parentId].children.push(node);
}
}
}
return result;
}
const optimizedTree = buildTreeOptimized(flatData);
console.log(JSON.stringify(optimizedTree, null, 2));
优点:
- 时间复杂度O(n),性能优异
- 适合大数据量处理
缺点:
- 需要额外的内存空间存储映射
方法3:使用Map数据结构(ES6+)
function buildTreeWithMap(items) {
const map = new Map();
const result = [];
// 初始化所有节点并存入Map
items.forEach(item => {
map.set(item.id, { ...item, children: [] });
});
// 构建树结构
items.forEach(item => {
const node = map.get(item.id);
if (item.parentId === 0) {
result.push(node);
} else {
const parent = map.get(item.parentId);
if (parent) {
parent.children.push(node);
}
}
});
return result;
}
const mapTree = buildTreeWithMap(flatData);
console.log(JSON.stringify(mapTree, null, 2));
优点:
- 使用Map更现代,性能更好
- 支持任意类型作为键
方法4:使用reduce实现(函数式编程)
function buildTreeWithReduce(items) {
const itemMap = items.reduce((map, item) => {
map[item.id] = { ...item, children: [] };
return map;
}, {});
return items.reduce((result, item) => {
if (item.parentId === 0) {
result.push(itemMap[item.id]);
} else if (itemMap[item.parentId]) {
itemMap[item.parentId].children.push(itemMap[item.id]);
}
return result;
}, []);
}
const reducedTree = buildTreeWithReduce(flatData);
console.log(JSON.stringify(reducedTree, null, 2));
优点:
- 函数式风格,代码简洁
- 两次遍历完成构建
三、进阶功能实现
1. 添加排序功能
function buildTreeWithSort(items, sortBy = 'id') {
const itemMap = {};
const result = [];
// 构建映射
items.forEach(item => {
itemMap[item.id] = { ...item, children: [] };
});
// 构建树结构
items.forEach(item => {
const node = itemMap[item.id];
if (item.parentId === 0) {
result.push(node);
} else if (itemMap[item.parentId]) {
itemMap[item.parentId].children.push(node);
}
});
// 递归排序
function sortTree(nodes) {
nodes.sort((a, b) => a[sortBy] - b[sortBy]);
nodes.forEach(node => {
if (node.children.length) {
sortTree(node.children);
}
});
}
sortTree(result);
return result;
}
const sortedTree = buildTreeWithSort(flatData, 'id');
console.log(JSON.stringify(sortedTree, null, 2));
2. 处理循环引用
function buildTreeWithCycleDetection(items) {
const itemMap = {};
const result = [];
const visited = new Set();
// 构建映射
items.forEach(item => {
itemMap[item.id] = { ...item, children: [] };
});
// 检测循环引用
function hasCycle(node, parentIds = new Set()) {
if (parentIds.has(node.id)) return true;
parentIds.add(node.id);
for (const child of node.children) {
if (hasCycle(child, new Set(parentIds))) {
return true;
}
}
return false;
}
// 构建树结构
items.forEach(item => {
if (!visited.has(item.id)) {
const node = itemMap[item.id];
if (item.parentId === 0) {
result.push(node);
} else if (itemMap[item.parentId]) {
itemMap[item.parentId].children.push(node);
}
visited.add(item.id);
// 检查循环引用
if (hasCycle(node)) {
throw new Error(`检测到循环引用,节点ID: ${node.id}`);
}
}
});
return result;
}
3. 支持自定义子节点字段名
function buildTreeCustomChildren(items, childrenField = 'children') {
const itemMap = {};
const result = [];
// 构建映射
items.forEach(item => {
itemMap[item.id] = { ...item, [childrenField]: [] };
});
// 构建树结构
items.forEach(item => {
const node = itemMap[item.id];
if (item.parentId === 0) {
result.push(node);
} else if (itemMap[item.parentId]) {
itemMap[item.parentId][childrenField].push(node);
}
});
return result;
}
四、性能优化技巧
- 使用Map代替普通对象:当ID为非数字时性能更好
- 批量处理数据:对于大数据量可分批次处理
- 使用Web Worker:对于极大数据集可在后台线程处理
- 惰性加载:只构建和渲染可见部分的树结构
五、实际应用示例
1. 渲染树形菜单(React示例)
function TreeMenu({ data }) {
return (
<ul>
{data.map(node => (
<li key={node.id}>
{node.name}
{node.children && node.children.length > 0 && (
<TreeMenu data={node.children} />
)}
</li>
))}
</ul>
);
}
// 使用
const treeData = buildTreeOptimized(flatData);
ReactDOM.render(<TreeMenu data={treeData} />, document.getElementById('root'));
2. 树形表格(Vue示例)
<template>
<table>
<tbody>
<tree-row
v-for="node in treeData"
:key="node.id"
:node="node"
:level="0"
/>
</tbody>
</table>
</template>
<script>
import { buildTreeWithMap } from './treeUtils';
export default {
data() {
return {
flatData: [...], // 原始扁平数据
treeData: []
};
},
created() {
this.treeData = buildTreeWithMap(this.flatData);
},
components: {
TreeRow: {
props: ['node', 'level'],
template: `
<tr :style="{ paddingLeft: level * 20 + 'px' }">
<td>{{ node.name }}</td>
<td>{{ node.otherField }}</td>
</tr>
<tree-row
v-for="child in node.children"
:key="child.id"
:node="child"
:level="level + 1"
v-if="node.children"
/>
`
}
}
};
</script>
六、总结与最佳实践
-
选择合适算法:
- 小数据量:递归算法简单直观
- 大数据量:对象引用或Map实现性能更好
-
处理边界情况:
- 无效的parentId引用
- 循环引用检测
- 重复数据处理
-
扩展性考虑:
- 支持自定义子节点字段名
- 添加排序功能
- 支持异步数据加载
-
性能监控:
- 对于超大数据集考虑分页或虚拟滚动
- 使用性能分析工具监控构建时间
-
测试建议:
// 单元测试示例 describe('树形结构构建', () => { it('应正确构建树形结构', () => { const flatData = [...]; const treeData = buildTreeOptimized(flatData); expect(treeData.length).toBe(2); expect(treeData[0].children.length).toBe(2); expect(treeData[0].children[1].children.length).toBe(2); }); it('应处理无效parentId', () => { const invalidData = [...]; const treeData = buildTreeOptimized(invalidData); expect(treeData.length).toBe(1); }); });
通过本文介绍的各种方法和技巧,您应该能够根据实际需求选择最适合的方式将扁平数据转换为树形结构。在实际项目中,推荐使用对象引用或Map实现的高效算法,它们在大数据量下表现优异,同时代码也相对清晰可维护。