Uva 10673-Play with Floor and Ceil(扩展欧几里得)

题目链接:点击打开链接

题意:给出x, k 求 方程 p*floor(x/k)+q*ceil(x/k)=x的一个解。floor()为向上取整,ceil()为向下取整。

赤裸裸的扩展gcd,题目中没说无解的情况,应该是默认 x%gcd(floor(x/k),ceil(x/k))==0 

对于扩展gcd,ax+by=d ① ,当d为g=gcd(a,b)的倍数时,方程①有解,转化为求 ax+by=g ②的解,假设求出来方程②的解为 (x0,y0)

方程②左右同乘 d/g,得 a*(x0*d/g)+b*(y0*d/g)=g*d/g,所以方程①的解为 (x0*d/g,y0*d/g)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define maxn 1002
#define _ll __int64
#define ll long long
#define INF 0x3f3f3f3f
#define Mod 10000007
#define pp pair<int,int>
#define ull unsigned long long
using namespace std;
ll x,k;
ll gcd(ll a,ll b)
{
	return b==0?a:gcd(b,a%b);
}
ll ex_gcd(ll a,ll b,ll& d,ll& x,ll& y)
{
	if(!b){d=a;x=1;y=0;}
	else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
void solve()
{
	ll a=floor((double)x/(double)k);
	ll b=ceil((double)x/(double)k);
	ll g=gcd(a,b);
	ll d=g,tx,ty;a/=g;b/=g;
	ex_gcd(a,b,d,tx,ty);
	printf("%lld %lld\n",tx*x/g,ty*x/g);
}
int main()
{

	int T;scanf("%d",&T);
	while(T--){
		scanf("%lld %lld",&x,&k);
		solve();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值