题目链接:点击打开链接
题意:给出x, k 求 方程 p*floor(x/k)+q*ceil(x/k)=x的一个解。floor()为向上取整,ceil()为向下取整。
赤裸裸的扩展gcd,题目中没说无解的情况,应该是默认 x%gcd(floor(x/k),ceil(x/k))==0
对于扩展gcd,ax+by=d ① ,当d为g=gcd(a,b)的倍数时,方程①有解,转化为求 ax+by=g ②的解,假设求出来方程②的解为 (x0,y0)
方程②左右同乘 d/g,得 a*(x0*d/g)+b*(y0*d/g)=g*d/g,所以方程①的解为 (x0*d/g,y0*d/g)
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define maxn 1002
#define _ll __int64
#define ll long long
#define INF 0x3f3f3f3f
#define Mod 10000007
#define pp pair<int,int>
#define ull unsigned long long
using namespace std;
ll x,k;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
ll ex_gcd(ll a,ll b,ll& d,ll& x,ll& y)
{
if(!b){d=a;x=1;y=0;}
else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
void solve()
{
ll a=floor((double)x/(double)k);
ll b=ceil((double)x/(double)k);
ll g=gcd(a,b);
ll d=g,tx,ty;a/=g;b/=g;
ex_gcd(a,b,d,tx,ty);
printf("%lld %lld\n",tx*x/g,ty*x/g);
}
int main()
{
int T;scanf("%d",&T);
while(T--){
scanf("%lld %lld",&x,&k);
solve();
}
return 0;
}