Leetcode: House Robber 系列
这个系列包括以下题目:
- 198. House Robber
- 213. House Robber II
- 337. House Robber III
198. House Robber
题目意思是:给出一系列数字,代表房子可以抢的钱,不能同时抢相邻的房子的钱,问能抢到的最大值。
得到动态转移方程如下:
dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
now = max(pre,bef+nums[i]);
now=pre;
pre=bef;
这样复杂度是O(n)+O(1)。
213. House Robber II
题目意思是:给出一系列数字,代表房子可以抢的钱,不能同时抢相邻的房子的钱,问能抢到的最大值。多了一个限制条件,就是房子间是连成一个环的,意味这第一间房子和最后一间是相连的。
得到动态转移方程如下:
dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
now = max(pre,bef+nums[i]);
now=pre;
pre=bef;
这样复杂度是O(n)+O(1)。
是的,思路和第一题一样,不过就是要特殊解决环状带来的第一间房子和最后一间房子相邻的问题。那么就有:
now_1ton = max(now_1ton-1,now_2ton);
就是比较不抢劫1或者不抢劫n两种情况(都不抢的情况如果是解,肯定是会包含在这两个情况里面的)。然后就done啦。
Leetcode: House Robber 系列
这个系列包括以下题目:
- 198. House Robber
- 213. House Robber II
- 337. House Robber III
198. House Robber
题目意思是:给出一系列数字,代表房子可以抢的钱,不能同时抢相邻的房子的钱,问能抢到的最大值。
得到动态转移方程如下:
dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
now = max(pre,bef+nums[i]);
now=pre;
pre=bef;
这样复杂度是O(n)+O(1)。
337. House Robber III
题目意思是:给出一系列数字,代表房子可以抢的钱,不能同时抢相邻的房子的钱,问能抢到的最大值。这次的附加条件是,房子间的相邻关系可以表示为一颗二叉树。
这个比较复杂,肯定就是要用dp的了。现在要考虑的是要怎么分解为子问题。首先,
dp_root = max(dp_left,dp_right);
类似这样是不行的,因为你不知道到底有没有选了left或者right,只要选了一个,你就不能选root,但要是都不选,root又可以选。所以考虑跨一级。考虑孙子ll,lr,rl,rr四个孙子。考虑两种情况,选root(root->val + dp_ll + dp_lr + dp_rl + dp_rr)或者不选root(dp_l + dp_r)。
得到动态转移方程如下:
dp_root = max(root->val + dp_ll + dp_lr + dp_rl + dp_rr, dp_l + dp_r));
代码
class Solution {
public:
int tryRob(TreeNode* root, int& l, int& r) {
if (!root)
return 0;
int ll = 0, lr = 0, rl = 0, rr = 0;
l = tryRob(root->left, ll, lr);
r = tryRob(root->right, rl, rr);
return max(root->val + ll + lr + rl + rr, l + r);
}
int rob(TreeNode* root) {
int l, r;
return tryRob(root, l, r);
}
};
这样复杂度是O(n)。