数据挖掘的过程
机器学习、数据挖掘的过程:数据选择——》数据清洗——》数据构造——》数据格式化——》训练模型——》评估模型——》模型优化——》部署
数据选择:剔除不相关属性和冗余属性
数据清洗:检验异常值、提高数据质量
数据构造:对缺失边界的属性进行样本数据构建
数据格式化:对样本数值化、规范化
过程也可以总结为:业务理解——》数据理解——》建模 ——》模型优化——》部署
如有不当之处,欢迎指导
机器学习、数据挖掘的过程:数据选择——》数据清洗——》数据构造——》数据格式化——》训练模型——》评估模型——》模型优化——》部署
数据选择:剔除不相关属性和冗余属性
数据清洗:检验异常值、提高数据质量
数据构造:对缺失边界的属性进行样本数据构建
数据格式化:对样本数值化、规范化
过程也可以总结为:业务理解——》数据理解——》建模 ——》模型优化——》部署
如有不当之处,欢迎指导