数据挖掘总结之数据挖掘的过程

数据挖掘的过程

机器学习、数据挖掘的过程:数据选择——》数据清洗——》数据构造——》数据格式化——》训练模型——》评估模型——》模型优化——》部署
数据选择:剔除不相关属性和冗余属性
数据清洗:检验异常值、提高数据质量
数据构造:对缺失边界的属性进行样本数据构建
数据格式化:对样本数值化、规范化

过程也可以总结为:业务理解——》数据理解——》建模 ——》模型优化——》部署

如有不当之处,欢迎指导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值