Outlier Detection
文章平均质量分 69
Outlier Detection
疯狂java杰尼龟
路漫漫其修远兮,吾将上下而求索
展开
-
数据处理——-python csv文件删除行或者删除列
python csv文件简单的删除行或者删除列主要有以下四种方法。'''方法一和方法二用于一般的删除方法三使用切片比较方便方法四一般用于遍历删除对应某种属性值的行'''import pandas as pddata = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]])print(data)#方法一data1 = data.drop([0,1])print('删除第 0 和 1 行后data1 = ')print(data1)#方法二data2 =原创 2021-04-29 11:14:16 · 16098 阅读 · 9 评论 -
参考文献格式
1、网址类参考文献常用的电子文献及载体类型标识[文献类型标识/载体类型标识][DB/OL] ——-联机网上数据库(database online)[DB/MT] ——磁带数据库(database on magnetic tape)[M/CD] ——光盘图书(monograph on CD-ROM)[CP/DK] ——磁盘软件(computer program on disk)[J/OL] —原创 2022-03-03 15:43:52 · 4131 阅读 · 0 评论 -
硬盘SMART检测参数详解
硬盘SMART一、SMART概述二、SMART信息解读三、SMART参数详解一、SMART概述要说Linux用户最不愿意看到的事情,莫过于在毫无警告的情况下发现硬盘崩溃了。诸如RAID的备份和存储技术可以在任何时候帮用户恢复数据,但为预防硬件崩溃造成数据丢失所花费的代价却是相当可观的,特别是在用户从来没有提前考虑过在这些情况下的应对措施时。硬盘的故障一般分为两种:可预测的(predictable)和不可预测的(unpredictable)。后者偶而会发生,也没有办法去预防它,例如芯片突然失效,机械撞击转载 2021-05-08 10:43:20 · 5130 阅读 · 0 评论 -
深度学习数据处理(可执行代码)
常见方法包含import,可直接运行(贴心不~)遍历单个文件所含文件列表注意:该方法对目标文件夹中所包含的文件夹不起作用,一般用来展示多个csv文件import osdef files_path(rootpath): path_list = [] if os.path.exists(rootpath): dirs = os.listdir(rootpath)#用于返回指定的文件夹包含的文件、即包含的文件夹的名字的列表 dirs.sort()#作原创 2021-03-15 10:30:33 · 691 阅读 · 1 评论 -
Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding
第一作者信息:Kyle HundmanNASA Jet Propulsion LaboratoryCalifornia Institute of Technologykyle.a.hundman@jpl.nasa.gov之前周报做的ppt,分享于此。注:本篇论文已上传到资源,需要的童鞋可免费下载。博主研究方向为时间序列的异常检测,欢迎交流。知识浅薄,如有错误之处,欢迎指正交流~...原创 2020-11-07 22:02:58 · 878 阅读 · 3 评论 -
Lifelong Disk Failure Prediction via GAN-based Anomaly Detection
论文来源:ICDD作者:jiangtianming华中科技大学Email:jiangtianming@hust.edu.cn注:本篇论文已上传到资源,需要的童鞋可免费下载。前面发的两篇论文分析访问量比较低,这一篇我希望用自己的语言来把文章的思想说清楚。请君仔细阅读。目录0、论文方法一、时序特征二、数据预处理1、选取特征2、二维特征3、正则化模型1、模型老化问题2、样本标记0、论文方法以上的方法其实也说明白了异常检测的思路。首先进行数据预处理,将SMART数据映射到类似图像的二维数据.原创 2020-11-05 15:40:07 · 600 阅读 · 4 评论 -
Transfer Learning based Failure Prediction for Minority Disks in Large Data Centers of Heterogene..
本篇文章研究内容为”迁移学习+少数磁盘故障预测”。TLDFP原创 2020-10-26 10:28:01 · 926 阅读 · 4 评论 -
一种硬盘故障预测的非监督对抗学习方法
最近准备开题答辩了,把之前阅读过的论文整理一下,加深理解。本文关键词:领域:异常检测,深度学习方法:非监督对抗学习场景:硬盘故障检测网络结构:基于LSTM自编码器与生成式对抗网络相结合数据集:BackBlaze作者信息:姜少彬(1991—)国防科技大学硕士研究生E-mail:jiangshaobin1991@163.com论文主要方法采用非监督对抗学习的好处,由于训练阶段未用到异常样本(即正样本),模型不受样本不均衡的影响,很好的避免了由于训练样本不均衡导致的过拟合问题。已有研原创 2020-10-15 14:32:55 · 592 阅读 · 1 评论 -
分类模型常见F1分数、精确率、召回率、正确率、虚警率和漏检率、平衡精度、AUC等性能评价指标
目录1、常见的几种预测情况2、精确率和召回率(Precision And Recall)3、F1-分数(F1-Score)4、其他常见性能评价指标1、常见的几种预测情况TP ,True Positive,表示把正类预测为正类TN,True Negative,表示把负类样本预测为负类FP,False Positive,表示把负类预测为正类FN,False Negative,表示把正类预测为负类。“狼来了”的故事模型2、精确率和召回率(Precision And Recall)精确度/精确率(原创 2020-10-15 11:32:36 · 8463 阅读 · 0 评论