给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
“呼,总算通过了,还是太菜了。” 开头的思路有问题,什么叫二叉搜索树,题目解释的很明白。
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树
所以最简单的方式:
我们可以利用二叉搜索树的特性,对二叉搜索树进行中序遍历,
则得到的序列必定为递增序列,否则不是二叉搜索树。
#include <iostream>
#include <vector>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
bool isValidBST(TreeNode* root) {
if(root==NULL)
return true;
TreeValSave(root);
return JudgeIsAsc();
}
/* 判断是否是递增序列 */
bool JudgeIsAsc(){
bool IsJudge = true;
for(int i=1;i<vec_val.size();i++){
if(vec_val[i-1] >= vec_val[i]){
IsJudge = false;
break;
}
}
return IsJudge;
}
private:
/* 中序遍历二叉搜索树 */
void TreeValSave(TreeNode *root){
if(root->left){
TreeValSave(root->left);
}
vec_val.push_back(root->val);
if(root->right){
TreeValSave(root->right);
}
}
/* 存储中序遍历的vector数组 */
vector<int> vec_val;
};
/*
[10,5,15,null,null,6,20]
true
false
2
/ \
1 4
/ \
3 5
*/
int main(){
TreeNode *root = new TreeNode(2);
TreeNode *l1 = new TreeNode(1);
TreeNode *r1 = new TreeNode(4);
TreeNode *rl2 = new TreeNode(3);
TreeNode *rr2 = new TreeNode(5);
root->left = l1;
root->right = r1;
r1->left = rl2;
r1->right = rr2;
Solution *ps = new Solution();
int d = ps->isValidBST(root);
printf("%d \n",d);
return 0;
}