GPU pytorch 1.4.0 cuda 10.1 安装

安装版本:pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1,pytorch官网

第一步:安装 conda 镜像通道

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

第二步:

       官方命令:

# CUDA 10.1
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

        实际执行: 去除 -c pytorch ,因为该参数指的是指定官方的通道,导致下载的路径不是国内源,因此去除该参数

        canda 执行 命令如下:

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1

最后,验证安装是成功:

import torch

安装查考文章:

       PyTorch环境配置及安装

### 解决 torchvision 0.5.0 安装时出现的 PackagesNotFoundError 错误 当遇到 `PackagesNotFoundError` 错误提示无法从当前通道获取所需软件包时,通常是因为默认的 Anaconda 渠道未能提供所需的特定版本库文件。对于安装 `torchvision==0.5.0` 的情况,可以通过扩展可用渠道来解决问题。 为了增加额外的软件仓库以便能够找到并成功安装指定版本的 `torchvision`,可以在命令前配置 Conda 使用更广泛的社区维护频道 conda-forge: ```bash conda config --append channels conda-forge ``` 完成上述设置后,再执行具体的安装指令以确保能顺利下载并安装目标版本的 `torchvision` 及其依赖项: ```bash conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch ``` 此操作会告知 Conda 同时检查官方 PyTorch 频道以及新增加的 conda-forge 来寻找匹配的软件包组合[^2]。 另外,在某些情况下,网络连接不稳定也可能导致此类问题的发生。因此建议确认本地计算机与互联网之间的连通状态良好,并考虑使用国内镜像站点加速资源获取过程。如果仍然遭遇困难,则可尝试离线安装的方法——即预先通过稳定网络环境下的另一台设备访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 或者 [NVIDIA cuDNN页面](https://developer.nvidia.com/cudnn),依据自身需求挑选合适的预编译二进制文件进行手动部署[^5]。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值