pytorch 生成模型(Generative Models) 详细介绍

以下是关于 PyTorch 中生成模型(Generative Models)的详细介绍,包括核心概念、常见模型类型、实现方法及代码示例。

一、生成模型简介

生成模型(Generative Models) 是一类用于学习数据分布并生成新样本的机器学习模型。其目标是捕捉输入数据的潜在分布 P(X),从而能够生成与训练数据相似的新样本。与判别模型(Discriminative Models)不同,生成模型更关注数据本身的分布特性。

核心任务

  1. 生成新样本:从学习到的分布中采样生成新数据。

  2. 密度估计:计算给定样本的概率。

  3. 隐变量推断:学习数据的潜在表示(Latent Variables)。

二、常见生成模型类型

PyTorch 中常用的生成模型包括:

  1. 生成对抗网络(GAN, Generative Adversarial Networks)
    原理:通过生成器(Generator)和判别器(Discriminator)的对抗训练,生成器尝试生成逼真样本,判别器尝试区分真实样本和生成样本。
  • 优点:生成样本质量高。

  • 缺点:训练不稳定,模式坍塌(Mode Collapse)。

PyTorch 实现示例

import torch
import torch.nn as nn

# 定义生成器
class Generator(nn.Module):
    def __init__(self, latent_dim, img_shape):
        super().__init__()
        self.model = nn.Sequential(
            nn.Linear(latent_dim, 128),
            nn.LeakyReLU(0.2),
            nn.Linear(128, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 784),
            nn.Tanh()
        )
        self.img_shape = img_shape

    def forward(self, z):
        img = self.model(z)
        return img.view(img.size(0), *self.img_shape)

# 定义判别器
class Discriminator(nn.Module):
    def __init__(self, img_shape):
        super().__init__()
        self.model = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开发小能手-roy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值