算法的时间复杂度和空间复杂度

本文详细介绍了算法的时间复杂度和空间复杂度。时间复杂度衡量算法执行所需的计算工作量,包括常数阶O(1)、线性阶O(n)、对数阶O(logn)等,并举例说明。空间复杂度则关注算法运行过程中所需的存储空间,包括输入、暂存和输出空间,并列举了常见函数阶如O(1)、O(n)、O(n²)等。
摘要由CSDN通过智能技术生成

一、算法的时间复杂度

1.时间复杂度:指算法执行所需要的计算工作量

2.时间频度:一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)

        一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f (n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)), 称O(f(n)) 为算法的渐近时间复杂度,简称时间复杂度

        在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如 T(n)=n^2+3n+4 与 T(n)=4n^2+2n+1 它们的频度不同,但时间复杂度相同,都为O(n²)。在 T(n)=4n^2-2n+1 中,就有f(n)=n²,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值