top、take和takeOrdered三种算子都是Spark中的Action操作,当原始数据集太大时,可以采用上述三个算子展示数据,下面分别介绍三个算子:
(1)takeOrdered算子
takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
关于top算子在源码中的解释如下:
/**
* Returns the first k (smallest) elements from this RDD as defined by the specified
* implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
* For example:
* {{{
* sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
* // returns Array(2)
*
* sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
* // returns Array(2, 3)
* }}}
**/
该算子返回RDD中最小的k个元素,其中排序规则用户可以自定义ord。
(2)top算子
top(num: Int)(implicit ord: Ordering[T]): Array[T]
top算子是与takeOrdered算子的相反的操作,该算子返回RDD中的最大的k个元素
查看top源码可以知道,top方法本身是调用了takeOrdered:
def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
takeOrdered(num)(ord.reverse)
}
(3)take算子
take(num: Int): Array[T]
take算子获取RDD中的前num个元素。
/** * Take the first num elements of the RDD. It works by first scanning one partition, and use the * results from that partition to estimate the number of additional partitions needed to satisfy * the limit. */
---------------------------------------------------------------------------个人实践中遇到的问题----------------------------------------
之所以写这篇博客,是因为自己在使用top和take的过程中遇到了一点问题:
val reduceRdd: RDD[(String, Double)] = mapRdd.reduceByKey(_+_)
val sortRdd: RDD[(String, Double)] = reduceRdd.sortBy(_._2,false)
val result: Array[(String, Double)] = sortRdd.take(10)
在上述代码中,我是想获得排序后的前10个元素(即Value最大的前10个元素),使用take即可获得答案;我一开始使用的是top(10),但返回的结果是按照Key排序取出的前10个,应该是默认按照key排序。