Spark核心之top、take和takeOrdered

本文详细解析了Spark中的top、take和takeOrdered三种Action算子的功能与使用场景,特别是它们在处理大规模数据集时如何帮助展示数据。通过具体示例说明了这些算子如何返回数据集中最大或最小的k个元素,并分享了实践中的常见问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

top、take和takeOrdered三种算子都是Spark中的Action操作,当原始数据集太大时,可以采用上述三个算子展示数据,下面分别介绍三个算子:

(1)takeOrdered算子

takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]

关于top算子在源码中的解释如下:

 /**
   * Returns the first k (smallest) elements from this RDD as defined by the specified
   * implicit Ordering[T] and maintains the ordering. This does the opposite of [[top]].
   * For example:
   * {{{
   *   sc.parallelize(Seq(10, 4, 2, 12, 3)).takeOrdered(1)
   *   // returns Array(2)
   *
   *   sc.parallelize(Seq(2, 3, 4, 5, 6)).takeOrdered(2)
   *   // returns Array(2, 3)
   * }}}
   **/

该算子返回RDD中最小的k个元素,其中排序规则用户可以自定义ord。

(2)top算子

top(num: Int)(implicit ord: Ordering[T]): Array[T]

top算子是与takeOrdered算子的相反的操作,该算子返回RDD中的最大的k个元素

查看top源码可以知道,top方法本身是调用了takeOrdered:

 def top(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
    takeOrdered(num)(ord.reverse)
  }
(3)take算子
take(num: Int): Array[T]

take算子获取RDD中的前num个元素。

/**
 * Take the first num elements of the RDD. It works by first scanning one partition, and use the
 * results from that partition to estimate the number of additional partitions needed to satisfy
 * the limit.
 */

---------------------------------------------------------------------------个人实践中遇到的问题----------------------------------------

之所以写这篇博客,是因为自己在使用top和take的过程中遇到了一点问题:

 val reduceRdd: RDD[(String, Double)] = mapRdd.reduceByKey(_+_)
 val sortRdd: RDD[(String, Double)] = reduceRdd.sortBy(_._2,false)
 val result: Array[(String, Double)] = sortRdd.take(10)

在上述代码中,我是想获得排序后的前10个元素(即Value最大的前10个元素),使用take即可获得答案;我一开始使用的是top(10),但返回的结果是按照Key排序取出的前10个,应该是默认按照key排序。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值