对于正的浮点数,最简单的四舍五入方法就是用这样的一个表达式
(long) (x+0.5)
但是如果表达式对负数有效的话会更好,即使在你看来负数的情况不会发生。这意味着你可以用一个条件表达式:
x >= 0 ? (long)(x+0.5) : (long)(x-0.5)
这个表达式的返回值就是与浮点变量 x 的值最接近的整数值。
如果需要大量地使用舍入转换,则可以写这样的一个宏:
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
这可以在某种程度上使代码更具可读性。
注意到这样的转换会将 1.5 变为 2 但却将 -1.5 变为 -2,那么对于这样正好处于两个整数之间的浮点数,你可能需要做一些其它的处理,但这在实际当中并不十分重要。
需要小心的是,将一个浮点数转换为一个整型数可能导致上溢,但大多数的实现都没有进行相关的判断。用 long 替代 int 会给出一个更宽的范围(建议使用 long),但仍然比浮点数的范围要小得多。
如果效率不是至关重要的话,则可以定义这样的一个函数(而不是简单地写一个 #define),使你的程序更具鲁棒性:
long round(double x) {
assert(x >= LONG_MIN-0.5);
assert(x <= LONG_MAX+0.5);
if (x >= 0)
return (long) (x+0.5);
return (long) (x-0.5);
}
如果在意效率的话,可以写这样一个宏
#define round(x) ((x) < LONG_MIN-0.5 || (x) > LONG_MAX+0.5 ?\
error() : ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
这要求在程序中有 #include <limits.h>
,并且有一个处理错误的函数 error,其返回值为 long 类型。