多元函数积分学中的利用轮换对称性积分

当多个变元具有轮换对称性并且第一类曲线(面)积分计算量较大时,考虑利用轮换对称性解题


(1) ∮ L x 2 d s \oint_L x^2ds Lx2ds,其中 L L L为圆周 { x 2 + y 2 + z 2 = a 2 , x + y + z = 0. \left\{ \begin{aligned} x^2+y^2+z^2 & = & a^2,\\ x+y+z & = & 0 .\\ \end{aligned} \right. {x2+y2+z2x+y+z==a2,0.

解:
由于 x , y , z x,y,z x,y,z等效,所以具有轮换对称性,则:
∮ L x 2 d s = 1 3 ∮ L ( x 2 + y 2 + z 2 ) d s = 1 3 a 2 ∮ L d s = 1 3 a 2 2 π a = 2 3 π a 3 . \oint_Lx^2ds=\frac{1}{3} \oint_L(x^2+y^2+z^2)ds=\frac{1}{3} a^2\oint_Lds=\frac{1}{3}a^22\pi a=\frac{2}{3}\pi a^3. Lx2ds=31L(x2+y2+z2)ds=31a2Lds=31a22πa=32πa3.


(2)半径为 R R R的均匀球壳(面密度 μ = 1.0 \mu=1.0 μ=1.0),求其对过球心的一条轴 l l l的转动惯量.

解:
选取球心为坐标原点,转轴 l l l为直径 z z z轴,则球面方程为:

x 2 + y 2 + z 2 = R 2 . x^2+y^2+z^2=R^2. x2+y2+z2=R2.

I z = ∯ S ( x 2 + y 2 ) d s . I_z= \oiint_S(x^2+y^2)ds. Iz= S(x2+y2)ds.

由于 x , y , z x,y,z x,y,z等效,所以具有轮换对称性,则:

I z = ∯ S ( x 2 + y 2 ) d s = 2 3 ∯ S ( x 2 + y 2 + z 2 ) d s = 2 3 R 2 ∯ S d s = 2 3 R 2 4 π R 2 = 8 3 π R 4 . I_z= \oiint_S(x^2+y^2)ds=\frac{2}{3} \oiint_S(x^2+y^2+z^2)ds=\frac{2}{3}R^2\oiint_Sds=\frac{2}{3}R^24\pi R^2=\frac{8}{3}\pi R^4. Iz= S(x2+y2)ds=32 S(x2+y2+z2)ds=32R2 Sds=32R24πR2=38πR4.

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.zwX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值