利用机器学习创建基于位置的推荐程序

推荐系统被广泛应用于不同的应用程序中,用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里,你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型,其中最突出的包括基于内容的过滤和协作过滤。在本文中,我们将研究基于地理位置的推荐,我们特别关注地理位置,以便利用用户的地理位置提供更相关的推荐。

为了说明基于位置的推荐器的关键方面,我们将使用 K-Means 算法和来自 Kaggle 的 Yelp 数据集执行一个简单的基于位置的推荐。数据是 JSON 文件,可以用 pandas 轻松读取。

下表显示了数据集的前 5 行。表中提供了企业坐标、评级星级和每家企业的评论数量。

探索性数据分析(EDA)与预处理 

在本节中,我们将探索并预处理数据集。该数据集包含来自 yelp 用户的评论,并包含许多类别。为了简化我们的分析和对推荐模型的解释,我们将把重点放在餐馆上,您也可以选择您感兴趣的其他类别。

我们首先通过过滤所有包含 "餐馆 "一词的业务来创建一个餐馆数据帧。然后,我们绘制出餐厅星级从 1 星到 5 星的分布图。从图中可以清楚地看出,大多数餐厅的星级为 4.0 或 3.5 星,只有少数餐厅的星级为 5.0 星。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值