Lidar
文章平均质量分 88
gis收藏家
收藏真正有用的信息,数据问题及查找数据请私信
展开
-
探索 SAM 在遥感方面的能力
在点云生成的正射影像中,由于点云数据中存在更高级别的细节,分割结果可能比从垂直和倾斜图像获得的分割结果更好。需要注意的是,点云生成的正射影像的分割结果的质量取决于几个因素,包括点云数据的分辨率、正射影像的像素大小。尽管如此,我们仍然可以观察到一种模式,即倾斜角度约为 30-40 度,到相机点的距离越长,从给定的倾斜图像中分割的类别就越少。现在,我们将探讨 SAM 模型在不同遥感数据上的能力,包括假彩色图像、特写图像、倾斜照片和点云生成的正射影像。是的,但事实并非如此。将图像转换为具有分割 ID 的点云。原创 2024-04-15 09:39:32 · 1164 阅读 · 0 评论 -
激光点云SAM多角度点云分割
然而,单角度可能只能在 ALS 的 DEM(机载激光雷达产生的数字高程模型)中完成,对于手持设备(如 Geo-SLAM 和 iPhone 扫描)和 TLS(地面激光雷达),正射影像方法可能无法覆盖所有点,从点云进行自下而上的合并(Yang, Y., Wu, X., He, T., Zhao, H., & Liu, X., 2023)双向合并方法说明(Yang, Y., Wu, X., He, T., Zhao, H., & Liu, X., 2023)正射影像生成并在点云颜色的不同角度拍摄图像并输出图像。原创 2024-04-15 09:27:50 · 1332 阅读 · 0 评论 -
探索点云与KD-Tree配对的方法
树的每个内部节点代表点云的一个子集,并根据选定的坐标轴分为两个子节点。因此,点云分析的第一步也是主要步骤是将点配对以进行有意义的比较。当数据点分布不均匀时,空间的某些区域可能比其他区域拥有更多的点。当树中的某些节点比其他节点拥有更多的点时,就会发生这种情况。尽管网格采样是点配对的替代方法,但由于子采样过程(可能包括平均),它仍然会比点配对产生更粗糙的数据。Kd 树最近邻搜索算法有助于在 Kd 树数据结构中找到距离给定查询点最近的点。另一方面,与网格采样相比,点配对排除了平均,并产生更深入、更细粒度的结果。原创 2024-04-12 09:31:36 · 372 阅读 · 0 评论 -
全景图像与激光雷达数据融合用于树种识别
我们可以简单地使用聚类及其关联的几何形状来分割茂密而复杂的森林中的每棵树。另一方面,谷歌估计的深度图并不是从相机视点捕获的深度图,它只是谷歌地球基础设施模型的模拟,深度估计对于林业目的来说是不正确的,不能应用于树木距离估计。就全景和机载激光雷达的数据融合而言,它可能具有不同的时间分辨率,全景图像每年都会快速更新,实际上当地政府的机载激光雷达是十年一次(每十年)调查一次。茂密而复杂的森林可能不利于全景图像的后向投影过程,因此我们尝试从不同深度检索树干,并测试线与线的相交在非常拥挤和复杂的森林地块上是否有效。原创 2024-04-11 09:50:22 · 1271 阅读 · 0 评论 -
激光点云-无监督语义分割方法
换句话说,如果颜色范围扩大以包括更多变化,则几何分割可能变得不太有效,因为具有相似颜色但不同几何属性的点可能被分组在一起。对于样本1和样本2,基于几何的分割以及基于颜色和几何的解决方案的混合融合可以更好、更有效地从低密度和超小占地面积的LiDAR点云中分割出这些椅子。基于布料模拟过滤器的性质,非地面点的去除极大地促进了基于几何的分割。对于样本3和样本4,基于拓扑和几何的混合分割比仅基于几何的方法更好。与基于几何的解决方案相比,基于颜色的分割的优点和局限性。与基于几何的解决方案相比,基于拓扑的分割的优点。原创 2024-04-11 09:46:31 · 705 阅读 · 0 评论 -
使用切片技术从移动测绘系统点云中检索胸高直径
会有一些细节表面,如草地、灌木和人造特征(如路缘),与真实地面的区别不同。第一个具有主干和分支的切片条件将是最好的假设场景,因为 DbH 的测量已经计算了主干和分支,然后我们通常可以通过最小边界框计算来检索 DbH。树干和叶子的第二个切片结果对于 DbH 计算来说将是一个更复杂的场景,因为 DbH 测量仅计算木体(树干和树枝),这些叶子部分应使用强度阈值分割出来,以避免计算错误。树干和树叶的情况通常发生在一些路边树木腐烂更换的情况下,那些种植的树木又小又细,那么树叶和树干都会包含在离地1.3米的高度内。原创 2024-04-11 09:44:32 · 520 阅读 · 0 评论 -
使用切片技术从点云中测量树木胸径DBH
会有一些细节表面,如草地、灌木和人造特征(如路缘),与真实地面的区别不同。第一个具有主干和分支的切片条件将是最好的假设场景,因为 DbH 的测量已经计算了主干和分支,然后我们通常可以通过最小边界框计算来检索 DbH。树干和叶子的第二个切片结果对于 DbH 计算来说将是一个更复杂的场景,因为 DbH 测量仅计算木体(树干和树枝),这些叶子部分应使用强度阈值分割出来,以避免计算错误。树干和树叶的情况通常发生在一些路边树木腐烂更换的情况下,那些种植的树木又小又细,那么树叶和树干都会包含在离地1.3米的高度内。原创 2024-03-22 10:19:41 · 1103 阅读 · 0 评论 -
LiDAR 点云数据综合指南
通过了解不同的类型、它们的应用程序和处理技术,您可以利用这个强大的工具来解锁有价值的见解并推动不同领域的创新。但如此丰富的信息也带来了复杂性,特别是在理解不同类型的激光雷达点云数据时。本指南旨在成为您的一站式资源,阐明其中的细微差别,并使您能够有效地利用这些数据。它生成密集 3D 点云的能力为我们的世界提供了无与伦比的洞察力。随着激光雷达技术的不断发展,数据驱动解决方案的可能性只会不断扩大,塑造更光明的未来。这些先进技术使各个领域的专业人士能够获得更深入的见解并做出明智的决策。原创 2024-03-22 10:08:07 · 813 阅读 · 0 评论