SVM支持向量机学习笔记 _ 1 数学基础

SVM支持向量机学习笔记 _ 1 数学基础

注:本文以及以后出现的变量 x 或其他没有标量角标的变量,除特殊说明外,均为向量。

一、拉格朗日对偶性:

1.无约束的极值优化问题

Fermat引理,其中的核心告诉我们在该点可微的情况下,如果该点为极值点,则其导数必为0。

2.仅含等式约束的优化问题

Lagrange乘子法:

minxf(x)

s.t.hj(x)=0,j=1,2,,n

这是一个等式约束的优化问题,构建Lagrange乘子
L(x,βj)=f(x)+j=1nβjhj(x)

对每个变量和待求参数分别求偏导就得到了极值点的待求集合。
注:这个方法的理解可以参考下面的文章,讲的比较清楚,在此不再赘述。
深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

3.含不等式约束的优化问题(主要是Lagrange Duality)

考虑原始问题:

minxf(x)
s.t. ci(x)0,i=1,2,,k
       hj(x)=0,j=1,2,,l

将该问题称为原始最优化问题 p
接下来,引进广义拉格朗日函数(generalized Lagrange function)
L(x,α,β)=f(x)+i=1kαici(x)+j=1lβjhj(x)
αi0,i=1,2,,k

下面来解释一下我们为什么要构建这个函数:

θp(x)=maxα,β;αi0L(x,α,β)

且D为x满足原约束的集合,我们可以很轻松的得到:
θp(x)={f(x), xϵD+

minθp(x)=minxϵDf(x)

等式的前一项为D域上的问题,后一项为全局意义上的问题,这样就将原始的最优化问题转化成了极大极小问题,但是我们知道凸优化问题是我们常解决的一类问题,但是极小极大问题未必是凸优化问题。
所以我们下面来考虑极小极大问题的对偶问题:
原极小极大问题为
minxmaxα,β;αi0L(x,α,β)

其对偶问题为:
maxα,β;αi0minxL(x,α,β)

对于上述两个问题,存在以下三个定理:
令原始问题的最优值为 d ,对偶问题的最优值为 p ,这里的原始问题指的是对偶问题对应的原始问题,不是整篇文章最开始的原始问题(虽然结果是一致的)。

1.假定原始问题和对偶问题均有最优值,则 dp
2.考虑原始问题和对偶问题,假定函数 f(x) ci(x) 为凸函数, hj(x) 为仿射函数;并且假设不等式约束 ci(x) 是严格可行的,即存在 x ,对所有的i都有 ci(x)<0 ,则存在 x α , β ,使 x 是原始问题的解, α , β 是对偶问题的解,且 d=p=L(x,α,β)
3.对原始问题和对偶问题,假设函数 f(x) ci(x) 为凸函数, hj(x) 为仿射函数;并且假设不等式约束 ci(x) 是严格可行的,则 x,α,β 分别为原始问题和对偶问题的解的充分条件是 x,α,β 满足KKT条件:

xL(x,α,β)=0  ,  αL(x,α,β)=0  ,  βL(x,α,β)=0

αici(x)=0  , ci(x)0 , α0  , hj(x)=0

i=1,2,3,,m  ,  j=1,2,3,,n

本文内容参考李航老师的《统计学习方法》

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值