- 博客(359)
- 资源 (33)
- 收藏
- 关注
原创 Latex2024的安装
然后我们按住WIn+R再输入cmd,打开管理员控制权限。接着在命令框输入latex -v,注意,这里有个空格;以上,我们就完成了一个包括新建、编译和保存的简单应用。安装完成之后,就可以开始正式使用了。如图显示如上图,则安装成功。
2024-06-13 13:36:56
692
1
原创 打开json文件,读取里边的每一行数据,每一行数据是一个字典,使用matplotlib画图
这段代码的目的是读取 JSON 文件,提取关键信息,然后使用 Matplotlib 绘制四个子图,分别显示不同的指标随着 iter 变化的情况。这种图形化分析有助于直观地了解模型的性能。json文件格式如下:下面只粘贴出来前6行数据。
2024-01-22 16:12:05
703
原创 扒皮深度学习里边那些高大上的名词:有监督、半监督、无监督、弱监督、自监督
自我觉得在读论文的时候千万不要被那些高大上很学术的名词给吓退缩,其实你真正的结合源代码看一下他们很简单的操作,可能思路会有一点绕。
2023-03-25 17:56:29
1135
原创 数据集:CIFAR-10、CIFAR-100、MNIST、SVHN、ImageNet、LSUN
官网第一页写着CIFAR-10的来源:作者介绍CIFAR-10本质是从一个叫做【the 80 million tiny images dataset】(“8000万张小图”数据集)中精炼剥离出来的一部分,是该数据集的子集。结数据集的命名,国内网站搜不到CIFAR的含义,几番周折我在Alex2009年的科技报告第三章中找到了原因——anadiannstituteordvancedesearch加拿大高级研究所资助了Alex的这个项目,毕竟请学生打标签是需要pay的,
2022-12-26 22:10:01
2729
原创 Pycharm初次创建项目时页面环境变量选择
Pycharm确实是一个非常不错的Python开发IDE,尤其对于初学者而言。安装完Pycharm,并未创建任何工程项目时的界面,选择新建一个Pure Python项目,基于上述界面解读 :1是新建项目路径可以在Location处选择。2是Project Interpreter部分是选择新建项目所依赖的python库,第一个选项3会在项目中建立一个venv(virtualenv)目录,这里存放一个虚拟的python环境。这里所有的类库依赖都可以直接脱离系统安装的python独立运行。
2022-11-25 17:16:07
3967
原创 数学统计:均值、标准差、方差、协方差
显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?均值:均值描述的是样本集合的中间点,它告诉我们的信息是很有限的。
2022-11-24 11:22:08
2210
原创 Windows版本Anaconda安装教程
接着进入到许可协议的界面,这里点击。接着进入到用户选择的界面,选择。选项,也就是所有用户都能使用。选项,也就是我同意的意思。
2022-11-18 09:10:36
6645
1
原创 YOLOv4中的tricks概念总结——Bag of freebies
参考链接:https://blog.csdn.net/weixin_38688399/article/details/106692156https://www.cnblogs.com/yymn/articles/13672236.htmlopencv学堂的文章:想读懂YOLOV4,你需要先了解下列技术(一)https://zhuanlan.zhihu.com/p/104236411https://www.bilibili.com/video/BV1yi4y1g7ro?p=4https://b
2021-12-31 14:23:21
3033
原创 【无标题】
傅里叶变换:https://www.zhihu.com/question/19714540/answer/514107420泰勒展开式:https://www.zhihu.com/question/25627482/answer/313088784
2021-12-22 16:26:26
176
原创 台大李宏毅机器学习2021
ML 2021 Spring (ntu.edu.tw)https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.htmlDifferent types of functions。How to find a function?Regression:The function outputs as a scalar.Classification:Given options(classes),the function outputs the correct .
2021-12-14 15:49:59
1256
原创 (一)神经网络训练不起来怎么办:局部最小值(local minia)与鞍点(saddle point)
1、局部最小值(Local minima)与鞍点(saddle point)所谓的saddle point其实就是gradient是零,但是不是local minima,也不是local maxima;比如下面的saddle point,他在左右方向上是比较高的,前后的方向上是比较高的,他是一个马鞍的形状,所以叫做saddle point;像saddle point这种地方,他也是gradient为零,但他不是local minima,像这种gradient为0的点统称为critical po.
2021-12-14 14:47:23
2949
原创 Gradient Descent和Back propagation在做什么?
Gradient Descent梯度下降实际上你要用一个Gradient Descent的方法来train一个neural network的话你应该要怎么做?到底实际上在train neural network的时候Back propagation这个algorithm到底是怎么运作的?这个Back propagation是怎么样 neural network training比较有效率的?-----------------------------------------------------
2021-12-12 18:35:12
1550
原创 Tensor VS NumPy
1、Tensorhttps://pytorch.org/docs/stable/tensors.htmlTensor其实就是一个高维度的矩阵或是type:shape:how to construct a tensor?Operators:2、Numpyhttps://github.com/wkentaro/pytorch-for-numpy-usersNVIDIA CUDA是显卡里边的一个功能,...
2021-12-12 15:10:58
688
原创 Overleaf-LaTex表格制作
下面是一个表格生成器的网页:https://tablesgenerator.com/这个Tables Generator可以生成Latex代码,我们只要拷贝代码到overleaf平台进行编译就可以得到精美的表格;比如下边我们新建立一个生成7x4的表格:File--->New table可以通过这一栏菜单跟word操作一样,可以给表格加颜色,也可以在这个表格中输入数字,比如输入20,并且可以字体改颜色等,可以给表格加边框之类的(上下左右选择是否有边框线等);最后点击生成Ge.
2021-11-18 14:38:51
14945
1
原创 基于openCV的项目实战1:信用卡数字识别
目的:识别信用卡卡号;方法:基于模板匹配;模板匹配思想:拿4和左边模板进行一一匹配,算一下平方项的差异,恰好4和左边模板中的4差异最小,所以就知道当前的数字是4;具体步骤:第一步:找到与你当前非常接近的一个模板;第二步:把模板中每一个数字单独拿出来,(基于轮廓检测拿到每一个数字的外轮廓的外接矩形)第三步:在待检测区域中做同样的事情,拿到数字的每一个外接矩形;第四步:使用for循环对第三步中的第一个外界矩形与模板中的进行一一匹配(在匹配过程中需要进行一个resize,比如说模.
2021-11-12 16:36:51
3785
原创 使用pycharm将自己项目代码上传github(保姆教程)
1、梳理一下Git、github和gitee这三个之间的关系:1.1、Github首先从我们最熟悉的github来说,他其实是一个代码托管平台,我们可以在他的里面新建很多的仓库,有强迫症的我理解就是一个仓库是一个自己的项目代码,这些仓库可以是公开的也可以是私有的,公开的仓库可以允许别人来下载我们的代码,从而达到代码开源的一个目的;私有的就是只有自己有权限;1.2、Gitee其次是gitee这个其实也是一个代码托管的平台,是一个国内的平台,他跟github功能是一模一样的,多了一个功能就是
2021-11-12 16:17:03
7773
2
原创 Computer Vision Tasks
Computer Vision Tasks:图像分类、目标检测、语义分割、实例分割;只有目标检测和实例分割是实现了实例级别的识别的,就是把每一个单独的物体拎出来识别的;目标检测是画框框,而实例分割是抠图。实例识别:就是把图片中的每一个物体都单独进行识别出来;目标检测:是输入图像,输出每一个物体;(就是多个类别的多个框)图像分割:(1)Semantic Segmentation语义分割:我对每一个像素分类,我不管这个像素是属于哪几个物体的,只管他是属于什么类别的;(并不区分不.
2021-10-11 18:02:16
576
原创 PyTorch框架:(6)图像识别实战常用模块解读
1、TorchVision官网:https://pytorch.org/vision/stable/index.html在torchvision这个模块当中,包含了很多后续需要的功能:需要自己安装这个模块pip install torchvision。安装完之后我们就可以使用这里边的三大核心模块了。(1)torchvision.datasets里边不止封装了我们常用的数据集,可以下载和使用的;并且还定义了一些方法,比如数据该如何存放,然后让我们分类模型构建的更方便一些。(2)models
2021-10-08 14:11:54
1896
2
原创 PyTorch框架:(5)使用PyTorch框架构建卷积神经网络
基于pytorch构建一个非常简单的卷积神经网络,以Mnist数据集为例演示基本的流程1、导工具包2、读取数据(把该写的超参数全部写出来)PS:当前输入图像的大小,注意这里使用卷积网络处理Mnist数据他就不是一个一个像素点了,既然我们要用卷积网络去做,那输入的他得是一张图像,对于一张图像我们现在的输入得是28x28x1的三维的数据,我们现在需要的数据他是三维的他是三维的。3、卷积网络模块构建定义的conv1不光是做了一个卷积,他是一个卷积模块,包含了卷积、...
2021-09-26 21:24:40
727
原创 PyTorch框架:(4)如何去构建数据
接PyTorch框架:(3)1、最基本的方法(1)使用模块模块1:TensorDataset、模块2:DataLoader自己去构造数据集,然后一个batch一个batch的取数据,自己去写构造数据太麻烦,可以自动让其把数据源给我们构建好,这两个模块就是来帮我们完成这个事的。第一步把x_train和y_train传进去,使用TensorDataset自动的帮我们组件dataset即(train_ds);DataLoader是得搭配一下,先把数据转化为TensorDataset所支持的
2021-09-26 16:42:36
274
原创 PyTorch框架:(3)使用PyTorch框架构构建神经网络分类任务
目录0、背景1、分类任务介绍:2、网络架构3、手写网络3.1、读取数据集3.2、查看数据集3.3将x和y转换成tensor的格式3.4、定义model0、背景其实分类和回归本质上没有太大区别,只是说最终得到的结果是不同的,以及使用的损失函数是不同的,中间的网络架构相对于来说是比较固定的。1、分类任务介绍:分类任务中标签的设计稍微不同,比如上图中的9他预测出来就是123456789中的哪一个,不是这样的,而是我们的标签他也是一个one_hot en...
2021-09-26 15:13:58
359
原创 PyTorch框架:(2)使用PyTorch框架构建神经网络模型---气温预测
目录第一步:数据导入第二步:将时间转换成标准格式(比如datatime格式)第三步: 展示数据:(画了4个子图)第四步:做独热编码第五步:指定输入与输出第六步:对数据做一个标准化第七步:用torch来构建一个神经网络模型第八步:预测结果第九步:画图第一步:数据导入第二步:将时间转换成标准格式(比如datatime格式)第三步: 展示数据:(画了4个子图)第四步:做独热编码Q1:为什么做独热编码?A1:因为数...
2021-09-25 21:10:37
877
原创 PyTorch框架:(1)基本处理操作
1、PyTorch框架介绍 Torch其实跟Tensorflow中的Tensor是一个意思,当做是能在GPU中计算的矩阵就可以啦。意思就是现在我们有了一批数据,无论你是图像数据还是文本数据,我们都需要把数据转化成一个矩阵,接下来在建模过程当中,我们就是要对这些数据做各种各样的变换,这一些流程做完之后,得到我们想要达到的结果。PYtorch其实做了这样一些事情,他把我们所有矩阵需要计算的东西,统统的传入到GPU当中,因为GPU当中做矩阵运算比较快,GPU当中帮我们实现了所有的计算功能,整体...
2021-09-25 14:11:07
443
原创 卷积神经网络基础:(8)递归神经网络RNN
1、RNN网络由来RNN:Recurrent Neural Network。递归神经网络只是在传统神经网络上进行一个改进而已。正常流程是:输入---->隐层---->输出(数据来了经过隐层最终得到输出就完事了)当我们在使用递归神经网络的时候一些限制,现在我拿到一些数据它是有一些时间顺序相关,比如说我现在有一些数据时刻的一个特征,时刻的一个特征......一直到时刻的一个特征,相当于我自己加进来一个时间序列,当我这个网络在训练过程当中,他能考虑时间序列这个事情吗?不能,因为每.
2021-09-24 14:27:53
883
原创 卷积神经网络基础:(7)经典的网络架构
经典网络架构:(1)Alexnet:12年的经典之作,他是一个8层的网络,有5层的卷积,3层的全连接,其中的LRN层后来被证明没用,就不用去管他了。(2)Vgg:14年的经典之作,比12年的改进了很多,右边是vgg有很多不同的版本,红色框起来的是比较主流的版本,Vgg所有的卷积都是3x3的(比较小),都是细粒度进行特征提取;Vgg有16层和19层的版本,Vgg中每经过一次pooling,会损失一部分特征信息,体积会变成原来的1/4,会损失信息,Vgg网络在经过pooling之..
2021-09-24 13:07:21
168
原创 卷积神经网络基础:(6)卷积神经网络原理
1、卷积网络与传统网络的区别上图中左边是NN传统网络,右边是CNN卷积网络。传统网络输入比如784表示784个像素点,这只是一列特征;在CNN当中输入的不是784个像素点,而是原始的一张图像28x28x1是个三维的,当使用卷积网络做事情的时候,我们得把思想再抬高一个维度,现在的数据他就不是一列,不是一个向量,不是一个特征,而是一个长方体矩阵,它是一个三维的,所以接下来我们处理的矩阵都是三维的,HxWxC的我不会先把数据拉成一个向量,而是直接对这个样本,图像数据进行一个特征提取。PS:注意这.
2021-09-24 09:18:25
560
原创 神经网络基础:(3)神经网络整体架构
1、神经网络整体架构:输入层有多少个圈也就是神经元代表我们的输入数据有多少个;神经元代表的就是数据。中间连接的线就是权重参数。非线性操作:经过激活函数做一个非线性变换。(非线性操作加在了你每一步矩阵计算之后。)-----------------神经网络的强大之处在于,用更多的参数来拟合复杂的数据。2、影响因素:(1)神经元的个数(参数个数对结果的影响 )。(2)正则化的作用(惩罚力度对结果的影响)3、数据预处理拿到数据之后,我们不能直接给他输入到神经网络当中,..
2021-09-23 15:09:57
211
原创 网络模型:(0)背景
深度学习与机器学习的区别:深度学习最大的优势就是不用我们自己去选特征了,AI领域最大的难题就是怎么去提特征。但是深度学习是一个端到端的,一条龙服务,由输入到输出,过程不需要我们管,深度学习的优势就体现在这里,中间所有过程你不需要去管了。(把神经网络当做一个特征提取器,特征是非常重要的)深度学习缺点:在去建模的时候,对于分析方面的需求不是很满足,他一般是得到一个输出结果。机器学习流程:(1)数据获取 (2)特征工程(hard) (3)建立模型 (4)评估与应用深度学习:拿到数据之后
2021-09-23 10:31:37
92
原创 神经网络基础:(2)损失函数
比如上述分类,你只知道他做的不好,但是如何知道他做的有多差呢?而是具体一个数值。神经网络是既能做分类也能做回归,能做的事情比较多,唯一的区别就是损失函数你是如何定义的。做不同的任务就是损失函数不同而已。上图中,是其他错误类别分类得分,是正确类别的真实得分,加1相当于加一个,相当于容忍程度(加1表示我这个正确类别至少要比你这个错误类别高1以上,才是没损失的)。最后求0和max之间的最大值。上图中损失函数小于0,表示没有损失,意味着正确类别要比错误类别得分值高。--------------.
2021-09-23 10:30:46
763
原创 神经网络基础:(1)得分函数 or 得分函数
比如任务想做一个10分类的分类器:要得到属于每个类别的得分,所以叫做得分函数。对于每个x它属于每一个类别的得分值。上图中的猫是有像素点所决定的,他一共有32x32x3=3072个像素点;比如说猫耳朵或者猫眼睛以及图片中的背景对像素点的影响是不一样的。有些像素点对于他是猫起到促进作用,有些像素点对于他是猫,起到抑制作用;所以说每一个像素点它对应于当前像素点的重要程度是不一样的,在这里重要程度用w(权重参数)来表示,所以每个像素点也就是每个特征对应的权重参数w是不一样的,所以3072个像素点对应3.
2021-09-22 14:13:00
1112
1
原创 咕泡学院:(1)唐宇迪python课程作业
超级详细的python思维导图见链接:python数据科学必备工具实战思维导图链接:Python入门作业习题:a=set([1,2,3,4])for i in a: for j in a: for k in a: if(i!=j)and(i!=k)and(j!=k): print(i,j,k) 下面的思路是错的没有考虑到累加:I=int(input("请输入当月利润I=:"))p
2021-09-15 23:45:11
398
原创 Cost Function
How to fit the parameters theta for logistic regression,In particular, I'd like to define the optimization objective or the cost function that we'll use to fit the parameters.Here's to supervised learning problem of fitting a logistic regression model.
2021-09-01 23:01:18
199
原创 overfitting problem &underfitting problem
overfitting problem &underfitting problem, ti's just not even fitting the training data very well.Overfitting-----------a technique called regularization that will allow us to amelioratr or to reduce this overfitting problem and get these learning
2021-09-01 21:14:16
222
自己实地项目,关于通信:与安川控制器P3000通信模块代码
2022-07-03
解析波士顿Handle机器人背后的技术 - 硬创公开课-超清720P(2893481).mp4
2021-09-06
3D free-form object recognition in range images using local surface patches
2020-11-27
PCL-Principal-Curvature-CAN-master.zip
2020-11-27
基于coco格式的MaskRCNN完整训练过程
2020-11-27
Curvature Estimation
2020-10-12
Point Feature Extraction on 3D Range Scans Taking into Account
2020-09-05
Voxel-based Extraction and Classification
2020-09-03
HOUGH_LINE.cpp
2020-06-29
Fast 3D Line Segment Detection From Unorganized Point Cloud.pdf
2020-06-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人