模型部署onnx

import torch
from torchvision import models

net = models.resnet.resnet18(pretrained=True)
dummpy_input = torch.randn(1,3,224,224)
torch.onnx.export(net, dummpy_input, 'resnet18.onnx')
import onnx

# Load the ONNX model
model = onnx.load("resnet18.onnx")

# Check that the IR is well formed
onnx.checker.check_model(model)

# Print a human readable representation of the graph
# print(onnx.helper.printable_graph(model.graph))
import onnxruntime as rt
import numpy as  np
data = np.array(np.random.randn(1,3,224,224))
sess = rt.InferenceSession('resnet18.onnx')
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
print('input_name:',input_name,'label_name:',label_name)
pred_onx = sess.run([label_name], {input_name:data.astype(np.float32)})[0]
print(pred_onx.shape)
print(np.argmax(pred_onx))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值