output是tensor类型数据,则topk是output的固有函数(pytorch里固有的)
用法
a=torch.randn((4,6))
print(a)
tensor([[ 0.7042, 0.2533, 1.1596, -0.7436, 0.5264, 0.2085],
[ 0.2641, 0.9683, 0.4469, -1.9215, -0.7564, 1.1776],
[ 1.0520, -1.6003, -0.8634, 1.7596, -0.8464, 0.7166],
[-0.0492, -0.7746, 1.2592, -0.8273, 0.1266, 1.0450]])
maxk=max((1,3))
#用于取前k个最大的值——即top k
_, pred=a.topk(maxk,1,True,True)
#这里的pred指的是索引
print(_)
tensor([[1.1596, 0.7042, 0.5264],
[1.1776, 0.9683, 0.4469],
[1.7596, 1.0520, 0.7166],
[1.2592, 1.0450, 0.1266]])
print(pred)
tensor([[2, 0, 4],
[5, 1, 2],
[3, 0, 5],
[2, 5, 4]])
_, pred=a.topk(1,1,True,True)
print(_)
tensor([[1.1596],
[1.1776],
[1.7596],
[1.2592]])
print(pred)
tensor([[2],
[5],
[3],
[2]])
top-1就是只看概率最大的那个结果,是否预测正确,将其作为top-1的结果。
top-5就是看概率最大的前五个结果,只要里面包含了预测正确的结果,就算预测正确,将其作为top-5的结果