Spark基础(3)PairRDD-reduceByKey、groupByKey、sortByKey、sortBy、mapValue和join

本文介绍了Spark中PairRDD的创建方法,重点讲解了常用的转换操作,包括reduceByKey用于合并相同键的值,groupByKey对相同键的值进行分组,以及sortByKey进行键值对排序。同时,文章还探讨了reduceByKey与groupByKey的区别,并提到了mapValues函数的应用以及join操作的内连接概念。
摘要由CSDN通过智能技术生成
  • PairRDD的创建

可以采用多种方式创建Pair RDD,其中一种主要的方式是使用map()函数来实现。

scala> val lines = sc.textFile("pathToFile")
scala> val pairRDD = lines.flatMap(line => line.split(" ")).map(word => (word, 1))
scala> pairRDD.foreach(println)

第二种创建方式:通过并行集合(数组)创建RDD

scala> val list = List("Hadoop","Spark","Hive")
scala> val rdd = sc.parallelize(list)
scala> pairRDD = rdd.map(word => (word,1))
scala> pairRDD.foreach(println)

常用的PairRDD转换操作

  • reduceByKey(func) 使用func函数合并具有相同键的值
scala> pairRDD.reduceByKey((a,b)=>a+b).foreach(println)
  • groupByKey(func), 对具有相同Key的Value进行分组,Key相同对Value生成一个列表

比如四个键值对:

scala> val map = Map("spark"->1, "spark"->2, "ha
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值