计算回文子串的方法有很多,比如将该串反转后拼接在一起利用后缀数组,这里用一个O(n)的算法
首先这个算法为了将奇数串和偶数串放一起考虑,在每个字符的之间都加入了一个该字符串不存在的字符,如:
aabbaa
#a#a##b#b#a#a#
这样,所有的串都变成了奇数的形式
我们定义如下变量:
p[maxn]:存储以i位置为中心的最长回文半径
id:表示当前最长回文串的中心位置
mx:表示当前最长回文串向右延伸的最远位置
则我们可以得到,当前位置i 小于mx时,因为p[id]这个回文串是对称的,我们选择i的对称位置的回文长度p[2*id-i]和mx-i中较小的一个,所以p[i]=min(p[2*id-i],mx-i),接着对未知的地方继续暴力匹配。
#define clr(a,x) memset(a,x,sizeof a)
char S[maxn];
char T[maxn];
int p[maxn];
int manancher() {
int ans = 0;
int mx = 0;
int id = 0;
int n = strlen(S);
T[0] = '$';
T[1] = '#';
int j = 0;
clr(p, 0);
for (int i = 0; i < n; i++) {
T[2 * i + 2] = S[i];
T[2 * i + 3] = '#';
}
T[2 * n + 2] = 0;
cout << T << endl;
for (int i = 1; i <= 2*n + 1; i++) {
if (i < mx) p[i] = min(p[2 * id - i], mx - i);
else p[i] = 1;
for (; T[i + p[i]] == T[i - p[i]]; p[i]++);
if (p[i] + i > mx) {
mx = p[i] + i;
id = i;
}
}
for (int i = 0; i < 2 * n + 2; i++) {
ans = max(ans, p[i]);
}
cout << ans - 1 << endl;
}