01背包,完全背包,多重背包(O(V*n))

01背包

有n种重量和价值分别为w[i]和v[i]的物品,每种各一个。从这些物品中挑选出总重量不超过W的物品,求所有挑选方案的价值总和最大值。

思路:容易得到该问题的状态转移方程为dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])
其中dp[i][j]表示从前i个物品中挑选出总重量不超过j的物品时总价值的最大值。

int w[maxn];
int v[maxn];
int n;
int dp[maxn][maxn];
int W;
void solve() {
    for (int i = 0; i<n; i++) {
        for (int j = 0; j <= W; j++) {
            if (j < w[i]) dp[i][j] == dp[i - 1][j];
            else {
                dp[i][j] = max(dp[i - 1][j - w[i]] + v[i], dp[i - 1][j]);
            }
        }
    }
    cout << dp[n][W] << endl;
}

dp方程还可以用一维数组表示:f[j]=max(f[j],f[v-w[i]]+v[i])
f[j]表示从前i个物品中挑选出总重量不超过j的物品时总价值的最大值。
需要注意的是这个方程的j应该从W到w[i]逆序遍历

int w[maxn];
int v[maxn];
int n;
int dp[maxn][maxn];
int W;
void solve() {
    for (int i = 0; i<n; i++)
        for (int j = W; j <= w[i]; j--)
            dp[j]=max(dp[j-w[i]]+v[i], dp[j]);
    cout << dp[W] << endl;
}

完全背包

将01背包的每种物品数量改成无限多个,这个问题就变成了完全背包。
容易想到状态转移方程为dp[i][j]=max(dp[i-1][j-k*w[i]]]+k*v[i]) k>=0
算法复杂度太高。
我们可以将式中的k约掉,最后得到dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]]+v[i])
这个结果可以重复利用数组,方程刚好是01背包的j的遍历方向反过来

int w[maxn];
int v[maxn];
int n;
int dp[maxn][maxn];
int W;
void solve() {
    for (int i = 0; i<n; i++) {
        for (int j = w[i]; j <= W; j++) {
            dp[j]=max(dp[j-w[i]]+v[i], dp[j]);
            }
        }
    }
    cout << dp[W] << endl;
}

多重背包

将01背包中的物品数量改为每个物品有n[i]个,问题就是多重背包问题了。
我们容易得到多重背包的方程dp[i][j]=max(dp[i-1] [j–k*w[i]]+k*v[i]) (0<=k<=m[i]),其中m[i]=min(n[i],j/w[i]),这个方程的复杂度不是很理想,我们可以利用j/w[i],将问题按照除出来的余数做一个分组,过程如下:
令d=m[i],则对于当前处理的物品i,有a=j/d,b=j%d,则j=a*d+b
将上面式子带入多重背包dp方程,结果如下:
dp[i][j]=max(dp[i-1] [a*d+b–k*d]+k*v[i]) (0<=k<=m[i])
令s=a-k,则上式可化为
dp[i][j]=max(dp[i-1] [b+s*d]+(a-s)*v[i]) (a-m[i]<=s<=a)
再变形,可得dp[i][j]=max(dp[i-1] [b+s*d]-s*v[i])+a*v[i]
化为一维可得,对于每一个分组f[j]=max(f[b+s*d])+a*v[i]=max(f(b),f(b+d),f(b+2*d),……,j)
因为每一个分组的长度都是固定的m[i],可以发现其中每一部分的最大值可以用单调队列来完成(滑动窗口最值问题)
我们建立两个队列p和q,p用来判断队列q队列里是否有过期数据,q用来求最大值。(也可以看做用q队列求p队列中的最大值),用一维数组处理后,代码如下:

int w[maxn];
int v[maxn];
int n[maxn];
int f[maxn];
int num;
int W;
deque<int> p;
deque<int> q;

void solve() {
    for (int i = 0; i < num; i++) {
        for (int j = 0; j < w[i]; j++){
            p.clear();
            q.clear();
            for (int k = j, a = 0; k <= W; k += w[i],a++) {
                if (p.size()==n[i]+1) { if(q.front()==p.front()) q.pop_front(); p.pop_front(); }
                int t = f[k] - a*v[i];
                p.push_back(t);
                while (!q.empty() && t >= q.back()) q.pop_back();
                q.push_back(t);
                f[k] = q.front() + a*v[i];
            }
        }
    }
    cout << f[W]<<endl;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值