516.Longest Palindromic Subsequence-最长回文子序列-区间规划

516.Longest Palindromic Subsequence-最长回文子序列-区间规划

题目

题目链接

思路

动态规划,二维表记录两个下标段间最长的回文子序列长度,然后不断扩大至整个序列
当首尾的两个字符相等时,直接将这两个字符加入:
d p [ 0 ] [ n − 1 ] = d p [ 1 ] [ n − 2 ] + 2 dp[0][n-1] = dp[1][n-2] + 2 dp[0][n1]=dp[1][n2]+2
不相等时,二选一:
d p [ 0 ] [ n − 1 ] = m a x ( d p [ 1 ] [ n − 1 ] , d p [ 0 ] [ n − 2 ] ) dp[0][n-1] = max(dp[1][n-1], dp[0][n-2]) dp[0][n1]=max(dp[1][n1],dp[0][n2])

初始化状态

初始化时对角线全部为1,即i==j,代表只含一个字母的回文子序列

10000
01000
00100
00010
00001

复杂度

最终要得到的数字是 d p [ 0 ] [ n − 1 ] dp[0][n-1] dp[0][n1],循环其实是从对角线往右上角填表

  • 时间复杂度
    表格尺寸为 n ∗ n n*n nn, O ( 1 / 2 ∗ n ∗ n ) = O ( n 2 ) \mathcal{O}(1/2*n*n)=\mathcal{O}(n^2) O(1/2nn)=O(n2)

  • 空间复杂度
    表格尺寸为 n ∗ n n*n nn, O ( 1 / 2 ∗ n ∗ n ) = O ( n 2 ) \mathcal{O}(1/2*n*n)=\mathcal{O}(n^2) O(1/2nn)=O(n2)

代码

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        n = len(s)
        # dp[i][j]表示从i到j之间的最长回文长度
        dp = [[0 for _ in range(n)] for _ in range(n)]
        # 初始化,对角线为1,即单个字符的回文长度为1
        for i in range(n):
            dp[i][i] = 1
        # 从长度为2开始扩大(从对角线向右上角填表)
        for length in range(2, n + 1):
            # 从前到后查看长度为length的子串,检查区间首尾字符是否相同
            for i in range(n - length + 1):
                j = i + length - 1  # j永远比i大,所以填的是右上角区域
                if s[i] == s[j]:  # 相同,+2
                    dp[i][j] = 2 + (0 if length == 2 else dp[i+1][j-1])
                else:  # 不相同,从规模更小的字符串中得出
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        return dp[0][n-1]  # 右上角数值
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值