第七章,相似矩阵及其应用,2-实对称矩阵之相似对角化

第七章,相似矩阵及其应用,2-实对称矩阵之相似对角化


玩转线性代数(35)实对称矩阵之相似对角化的笔记,相关证明以及例子见原文

实对称矩阵的性质

实对称矩阵在特征值与特征向量方面有两个重要性质,
(1)实对称矩阵的特征值为实数,从而对应的特征向量也是实向量;
(2)不同特征值对应的特征向量正交.
证明(2):
设对称矩阵A的两个不相等的特征值为 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2,其对应的特征向量分别为 P 1 P_1 P1 P 2 P_2 P2,要证 P 1 P_1 P1 P 2 P_2 P2正交,只需证明 [ P 1 , P 2 ] = 0 [P_1,P_2]=0 [P1,P2]=0即可。

λ 1 [ P 1 , P 2 ] = λ 1 P 1 T P 2 = ( λ 1 P 1 ) T P 2 = ( A P 1 ) T P 2 = P 1 T A T P 2 = P 1 T A P 2 \begin{aligned} \lambda_1[P_1,P_2]&=\lambda_1P_1^TP_2 \\ &=(\lambda_1P_1)^TP_2 \\ &=(AP_1)^TP_2 \\ &=P_1^TA^TP_2 \\ &=P_1^TAP_2 \\ \end{aligned} λ1[P1,P2]=λ1P1TP2=(λ1P1)TP2=(AP1)TP2=P1TATP2=P1TAP2
= λ 1 P 1 T P 2 = λ 2 [ P 1 , P 2 ] ⇒ ( λ 1 − λ 2 ) [ P 1 , P 2 ] = 0 =\lambda_1P_1^TP_2=\lambda_2[P_1,P_2]\Rightarrow (\lambda_1-\lambda_2)[P_1,P_2]=0 =λ1P1TP2=λ2[P1,P2](λ1λ2)[P1,P2]=0
λ 1 ≠ λ 2 \lambda_1\ne \lambda_2 λ1=λ2,所以 [ P 1 , P 2 ] = 0 [P_1,P_2]=0 [P1,P2]=0,所以 [ P 1 , P 2 ] [P_1,P_2] [P1,P2]正交。

实对称矩阵对角化定理

定理:设A为n阶对称矩阵,则必有正交阵P,使 P ( − 1 ) A P = P T A P = Λ P^(-1)AP=P^TAP=\Lambda P(1)AP=PTAP=Λ,其中 Λ \Lambda Λ是以A的n个特征值为对角元素的对角阵
推论:设A为n阶对称矩阵, λ \lambda λ是A的特征方程的k重根,则矩阵 A − λ E A-\lambda E AλE的秩 R ( A − λ E ) = n − k R(A-\lambda E)=n-k R(AλE)=nk,从而对应特征值 λ \lambda λ恰有k个线性无关的特征向量。
分析:A对称 ⇒ P − 1 A P = Λ ⇒ A 与 Λ 相似 ⇒ A − λ E 与 Λ − λ E \Rightarrow P^{-1}AP=\Lambda \Rightarrow A与\Lambda相似 \Rightarrow A-\lambda E与\Lambda - \lambda E P1AP=ΛAΛ相似AλEΛλE相似
λ \lambda λ为k重特征根时, R ( Λ − λ E ) = n − k = R ( A − λ E ) R(\Lambda -\lambda E)=n-k=R(A-\lambda E) R(ΛλE)=nk=R(AλE)
从而 λ \lambda λ对应k个线性无关的特征向量.

对称矩阵对角化步骤

1)求A的特征值;
2)由 ( A − λ E ) x = 0 (A-\lambda E)x=0 (AλE)x=0,求出A的特征向量;
3)将特征向量正交化;(只针对重根特征向量);
4)将特征向量单位化;
5)把这n个两两正交的单位特征向量构成矩阵P,便有 P − 1 A P = P T A P = Λ P^{-1}AP=P^TAP=\Lambda P1AP=PTAP=Λ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值