递推公式求通项

不动点求通项

1、一阶线性递推式 a n + 1 = c a n + d , c ≠ 0 , c ≠ 1 a_{n+1}=ca_n+d,c\neq 0,c\neq 1 an+1=can+d,c=0,c=1,已知 a 1 a_1 a1的值
特征方程: f ( x ) = a x + b f(x)=ax+b f(x)=ax+b,令 f ( x ) = x f(x)=x f(x)=x,解得特征根为 x 0 x_0 x0,则可得: a n − x 0 = c ( a n − 1 − x 0 ) = c n − 1 ( a 1 − x 0 ) a_n-x_0=c(a_{n-1}-x_0)=c^{n-1}(a_1-x_0) anx0=c(an1x0)=cn1(a1x0)
a n = c n − 1 ( a 1 − x 0 ) + x 0 a_n=c^{n-1}(a_1-x_0)+x_0 an=cn1(a1x0)+x0
x 0 = a 1 x_0= a_1 x0=a1时, a n = x 0 a_n=x_0 an=x0
x 0 ≠ a 1 x_0\neq a_1 x0=a1时, a n = c n − 1 ( a 1 − x 0 ) + x 0 a_n=c^{n-1}(a_1-x_0)+x_0 an=cn1(a1x0)+x0

2、二阶线性递推 a n + 2 = p a n + 1 + q a n a_{n+2}=pa_{n+1}+qa_{n} an+2=pan+1+qan,已知 a 1 , a 2 a_1,a_2 a1,a2,可以联立求得A、B
特征方程: x 2 = p x + q x^2=px+q x2=px+q,设有特征根 x 1 , x 2 x_1,x_2 x1,x2
x 1 ≠ x 2 x_1\neq x_2 x1=x2时, a n = A x 1 n − 1 + B x 2 n − 1 a_n=Ax_1^{n-1}+Bx_2^{n-1} an=Ax1n1+Bx2n1
x 1 = x 2 x_1=x_2 x1=x2时, a n = ( A + B n ) x 1 n − 1 a_n=(A+Bn)x_1^{n-1} an=(A+Bn)x1n1

3、分式递推式 a n + 1 = a a n + b c a n + d a_{n+1}=\frac {aa_{n}+b}{ca_n+d} an+1=can+daan+b r ≠ 0 , a d ≠ b c , a 1 ≠ − d c r\neq 0,ad\neq bc,a_1\neq -\frac dc r=0,ad=bc,a1=cd,已知 a 1 a_1 a1的值
特征方程: x = a x + b c x + d x=\frac {ax+b}{cx+d} x=cx+dax+b,设 x 1 , x 2 x_1,x_2 x1,x2是两个特征根,

x 1 ≠ x 2 x_1\neq x_2 x1=x2时, a n − x 1 a n − x 2 = a − x 1 c a − x 2 c × a n − 1 − x 1 a n − 1 − x 2 \frac {a_n-x_1}{a_n-x_2}=\frac {a-x_1c}{a-x_2c}\times \frac{a_{n-1}-x_1}{a_{n-1}-x_2} anx2anx1=ax2cax1c×an1x2an1x1

x 1 = x 2 x_1= x_2 x1=x2时, 1 a n − x 1 = 1 a n − 1 − x 1 + 2 c a + d \frac 1{a_n-x_1}=\frac 1{a_{n-1}-x_1}+\frac {2c}{a+d} anx11=an1x11+a+d2c

型如 a n + 1 = a n 2 + b a n + d a_{n+1}=\frac {a_n^2+b}{a_n+d} an+1=an+dan2+b
例:已知数列 { a n a_n an}, a n + 1 = a n 2 + 2 2 a n , a 1 = 2 a_{n+1}=\frac {a_n^2+2}{2a_n},a_1=2 an+1=2anan2+2,a1=2,求通项

解: f ( x ) = x 2 + 2 2 x = x , x 1 = 2 , x 2 = − 2 f(x)=\frac {x^2+2}{2x}=x,x_1=\sqrt 2,x_2=-\sqrt 2 f(x)=2xx2+2=x,x1=2 ,x2=2

a n + 1 − 2 a n + 1 + 2 = ( a n − 2 a n + 2 ) 2 = ( a 1 − 2 a 1 + 2 ) 2 n − 1 \frac {a_{n+1}-2}{a_{n+1}+2}=(\frac {a_{n}-2}{a_{n}+2})^2=(\frac {a_1-2}{a_1+2})^{2^{n-1}} an+1+2an+12=(an+2an2)2=(a1+2a12)2n1

解得:
a n = 2 × ( 2 + 2 ) 2 n − 1 + ( 2 − 2 ) 2 n − 1 ( 2 + 2 ) 2 n − 1 − ( 2 − 2 ) 2 n − 1 a_n=\sqrt 2\times \frac{ (2+\sqrt 2)^{2^{n-1} } +(2-\sqrt 2)^{2^{n-1}} }{ (2+\sqrt 2)^{2^{n-1} } -(2-\sqrt 2)^{2^{n-1}} } an=2 ×(2+2 )2n1(22 )2n1(2+2 )2n1+(22 )2n1

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值