Educational Codeforces Round 133 (Rated for Div. 2) D. Chip Move (完全背包dp)

原题链接:Problem - D - Codeforces

题目大意:

        给出两个数 nk,起点从下标 0 开始,第 1 步能跳的距离为 k 的倍数,即 k, 2\cdot k, 3\cdot k...... 步,第 2 步能跳的距离为 k+1 的倍数,即(k+1), 2\cdot (k+1), 3\cdot (k+1).....以此类推。要求你求出跳到区间 [1, n] 的方案数,答案对998244353 取模。

解题思路:

        求方案数目,首先先想到dp。针对样例 1 ,我们先画图观察一下:

        首先,第 1 步选择跳跃的时候,我们能跳 1,2,3,4... 的距离(红色为能跳到的地方)

 

        第 1 步时候我们选择跳 1 的距离,我们就能去到下标 1 ,选择 7 的距离我们就能去到 7 。他们都为 k 的倍数,因此全部跳完之后,我们得到的结果就是图中红色标注的方格。

        继续跳第 2 步,看看会发生什么:

        我们首先选择跳 k + 1 步,得到的结果如下:(用橙色点标出)

         解释一下,首先,我们要能跳第 2 步,那肯定从之前跳过了 1 步的点,继续往后跳。那么就是 1 跳到 32 跳到 4...。由于 7,8 跳到了范围外了,所以我们不考虑进来。

        我们再选择跳 2 \cdot (k+1) 步,得到的结果如下:(用深绿色点标出)

         

        同理:从 1 跳到 5,从 2 跳到 6...得到的就是绿色的点。

        我们将所有第 2 步的选择跳完,得到的结果就是:

        

         3,4 这两个点,在所有第 2 步的选择中,只能去到 1 次,5,6 能去 2 次,7,8 能去 3 次。

        如果我们 O(n) 枚举  k + i - 1 (i 代表当前为第几步)的倍数,将所有能去到的点都 O(n) 地扫一遍,总共要扫 n-k 次,总复杂度肯定会是 O(n^{3}) 级别的,这是不可接受的。

        考虑完全背包的转移方程:

        dp[i][j] = max(dp[i][j - w] + v, dp[i - 1][j])

        取 1 个,2个,3个...n个物品,我们完全可以用之前记录的取了 n - 1 个物品的值,加上单个物品的值,即 n - 1 + 1 ,最终得到取第 n 个的结果。我们可以利用完全背包来优化枚举倍数

         假设状态 dp[i][j] 为当前准备跳第 i 步,下标 j 能够被跳到的总次数,那么转移方程就为:

        dp[i][j] = dp[i][j - (k +i - 1)] +dp[i - 1][j - (k + i - 1)]

        这样,复杂度就被压到了 O(n^{2}) 的级别,似乎还过不了这题,我们仔细观察转移的情况

        对于样例 2,我们会得到这样一个图像:

        

        (左边代表第几步,上方代表得到的结果,下方代表下标)

        你会发现,事实上从第 3 步开,后面的步骤完全不用跳了。因为无论怎么跳,最多只能跳三步,再往后跳,也只会跳出范围。因此,事实上复杂度是跑不满 O(n^{2}) 的,甚至和 O(n) 差不多,我们只需要判断当前是否还有能跳的点,如果没有则直接 break 掉就可以了。

        空间是 2\cdot 10^{5} 的级别,那么我们开一个滚动数组就行了。

AC代码:

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
const int N = 3e5 + 10, mod = 998244353;
int dp[2][N];

void solve()
{
	int n, k, now = 0, pre = 1; //now为 i, pre则为i - 1
	cin >> n >> k;
	vector<int> ans(n + 1);//开一个ans来加上所有步的答案

	dp [pre][0] = 1;
	for (int i = k; i <= n; ++i)
	{
		bool ok = true;//利用ok来判断还能否继续跳

		for (int j = i; j <= n; ++j) 
		{
			dp[now][j] = (dp[now][j - i] + dp[pre][j - i]) % mod;
			if (dp[now][j]) ok = false;
		}

		if (ok) break;

		for (int i = 0; i <= n; ++i) 
			ans[i] = (ans[i] + dp[now][i]) % mod, dp[pre][i] = 0;
            //ans来加上所有步的答案 顺带把dp[i + 1][j]清零
		
		now ^= 1, pre ^= 1;//滚动
	}
	for (int i = 1; i <= n; ++i) cout << ans[i] << ' ';
}

signed main()
{
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);

	int t = 1; //cin >> t;
	while (t--) solve();

	return 0;
}

感谢观看。 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柠檬味的橙汁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值