经典算法--动态规划

本文详细介绍了动态规划算法的基本概念、思想、适用情况及求解步骤。动态规划通过存储和利用子问题的解,避免了重复计算,适用于具有最优子结构、无后效性和可能有重叠子问题的问题。文章还强调了动态规划设计的四个关键步骤,并指出实际应用中,设计比实现更为重要。动态规划的三要素包括问题阶段、阶段状态和递推关系,而最优决策表是描述求解过程的重要工具。
摘要由CSDN通过智能技术生成

零、概述
动态规划算法是算法中十分重要的一类,它解决了分治算法中子问题重叠性的问题,将已经求解过的子问题存储在一个表,通过特定的顺序访问这个表,并根据已有的值计算,最终就能得到问题的优化解。
在这里插入图片描述
一、基本概念
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
典型的LCS问题

二、基本思想与策略
基本思想与分治法类似,也是将问题分解为若干个子问题,按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

三、适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

(1) 最优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值