零、概述
贪心算法往往是一种用解的质量换取算法复杂度的策略,贪心在大多数情况大不能找到优化解,但能在低复杂度的情况下找到令人满意的次优解。
一、基本概念:
所谓贪心算法是指,在对问题求解时,仅仅具有局部优化的特点,也就是说,贪心不从整体优化的角度加以考虑,他选择的仅仅是局部最优解。
贪心算法设计的关键是贪心策略的选择。需要强调的是,贪心算法对大多数问题都不能得到整体最优解,而且选择的贪心策略不能与之前的状态有关,即贪心选择只针对当前的状态进行考虑。
二、贪心算法的基本思路:
1.建立数学模型。
2.分成若干个子问题。
3.子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
三、贪心算法的实现框架
初始解(一般为空)
while (可以继续贪心选择)
{
选择当前的局部最优解;
}
构成可行解。
四、贪心算法适用的问题
贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
五、贪心算法得到最优解的条件
1.贪心选择性:
若一个优化问题的全局优化解可以通过 局部优化选择得到,则该问题称为具有 Greedy选择性.
2.优化子结构:
若一个优化问题的优化解包含它的 子问题的优化解,则称其具有优化 子结构
贪心问题的关键往往是对贪心选择性的整明。
六、例题分析(转)
下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品装入是否能得到最优解?
(3)每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
(1)贪心策略:选取价值最大者。反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
(3)贪心策略:选取单位重量价值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。