KMP字符串匹配(C++)

字符串匹配:求一个字符串是不是另一个字符串的子串(下文称为主串和模式串)

KMP能够达到O(n+m)的时间复杂度,而暴力匹配(朴素匹配)则需要花费O(nm)的时间。


例题:判断aaab是不是aabaaaab的子串

暴力匹配:

按顺序一个一个匹配,失败了重新开始(主串向前移动一位,模式串回到第一位)

 

重复这个动作,直到最后

 

匹配成功

=========================================

KMP匹配

上述有冗余的部分,即模式串每次匹配失败都要回到第一位,主串也要回到和模式串第一位对应的位置,这就是复杂度O(nm)的原因。在匹配失败时,能否利用已知的信息,使得主串不用回滚,这样就只遍历主串一遍就能得出结果。方法是有的,这就是next数组,next数组说明了模式串每一个位置的字符在匹配失败时,当前匹配位置要回到之前的哪个地方。KMP的主要目的就是求出这个next数组。

具体表现形式,上述匹配会出现这种情况

朴素匹配发生匹配错误,将主串和模式串的匹配位置回滚,下一步是这样做

KMP发生匹配错误,通过next数组知道要回到下标2的位置,主串不用回滚,所以下一步是这样

也就是说它直接跳过前两位的匹配,因为这两位本来就是一样的,为什么还要再匹配一遍?

所以问题就转到next数组上,它为什么知道要回到下标2的位置进行匹配,那我们就要知道这个next数组是怎么生成的。这有点像是一个预处理的过程。

先说明两个名词,字符串的前缀和后缀,例如:

aaab的前缀有:a,aa,aaa

aaab的后缀有:b,ab,aab

 

在最后一个匹配失败时,我们知道前面那些都是匹配上的,即相同的。

前面匹配上的那些又是模式串的内容,所以在前面找到最长的前缀和后缀匹配,我们就可以把整块挪过去,就不会是朴素匹配那样一个位置一个位置挪。换句话说,next数组的值就是(前缀和后缀相同的最长长度)

红色框就是完全匹配上的,绿色框也是完全相同的,所以下次匹配就是这样子

这就是next数组的原理,只要知道怎么求前缀后缀的相同的最大值,就能解决。

 

==================================

后面进阶《AC自动机》,之前看过一篇不错的文章,找时间转载过来。

虽然是说AC自动机=KMP+字典树,但我看了AC自动机再回来看KMP挺清晰的。KMP就是一个单节点的树。

 

#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int N = 1000100;
int n, m;
// n 主串长度, m模式串长度
char a[N], b[N];
// a 主串, b 模式串, 下标从零开始
int nextt[N];
vector<int> Ans;
void get_nextt()
{
    int i = 0, j;
    j = nextt[0] = -1;
    while(i < m)
    {
        if(-1 == j || b[i] == b[j] )
            nextt[++i] = ++j;
        else
        j = nextt[j];
    }
}
void get_nextval() {
    int i = 0, j;
    j = nextt[0] = -1;
    while(i < m) {
         if(-1 == j || b[i] == b[j]) {
            ++i, ++j;
            nextt[i] = (b[i] != b[j]) ? j : nextt[j];
         }
         else {
            j = nextt[j];
         }
    }
}
int kmp_index(int pos) {
    // 求模式串在主串 pos位置 字符之后的位置
    int i = pos, j = 0;
    while(i < n && j < m) {
        if(-1 == j || a[i] == b[j]) {
            ++i, ++j;
        }
        else {
            j = nextt[j];
        }
    }
    if(j >= m) return i-m;
    else return -1;
}
int kmp_count(int pos) {
    // 求模式串在主串中出现了几次
    int i = pos, j = 0;
    int ans = 0;
    while(i < n) {
        if(-1 == j || a[i] == b[j]) {
            ++i, ++j;
            if(j >= m) {
                ++ ans;
                j = nextt[j];
                Ans.push_back(i-m+1);
            }
        }
        else
            j = nextt[j];
    }
    return ans;
}
int main()
{
     //该题计算b在a出现的位置,以及next数组的值
     cin >> a >> b;
     n=strlen(a),m=strlen(b);
     get_nextt();
     //get_nextval();
     int Index = kmp_index( 0 );
     int Count = kmp_count( 0 );
     for(int i=0;i<Ans.size();i++){
        cout<<Ans[i]<<endl;
     }
     for(int i=1;i<=m;i++){
        cout<<nextt[i]<<" ";
     }
     return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值