扩展欧几里得、同余方程、乘法逆元

扩展欧几里得、同余方程、乘法逆元

1.欧几里得

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数 gcd(a,b)。基本算法:设 a = qb + r,其中a,b,q,r都是整数,则 gcd(a,b) = gcd(b,r),即 gcd(a,b) = gcd(b,a%b)。

证明
a = qb + r
如果 r = 0,那么 a 是 b 的倍数,此时显然 b 是 a 和 b 的最大公约数。
如果 r ≠ 0,任何整除 a 和 b 的数必定整除 a - qb = r,而且任何同时整除 b 和 r 的数必定整除 qb + r = a,所以 a 和 b 的公约数集合与 b 和r 的公约数集合是相同的。特别的,a 和 b 的最大公约数是相同的。

int gcd(int a, int b)
{
    return b == 0 ? a : gcd(b, a%b);
}
2.扩展欧几里得

贝祖定理:ax+by=m 有整数解当且仅当m为gcd(a,b)的倍数

扩展欧几里得算法就是在求a,b最大公约数的同时,求出贝祖等式中x,y的一组整数解

公式推导
设 k = m / g c d ( a , b ) , 则 求 出 a x + b y = g c d ( a , b ) 的 解 后 , 再 乘 以 k 就 得 到 原 来 的 解 已 知 a x 1 + b y 1 = g c d ( a , b ) , 且 g c d ( a , b ) = g c d ( b , a % b ) 则 b x 2 + ( a − a / b ∗ b ) y 2 = g c d ( b , a % b ) 结 合 两 条 式 子 , 得 到 a x 1 + b y 1 = b x 2 + ( a − a / b ∗ b ) y 2 整 理 , 即 a x 1 + b y 1 = a y 2 + b ( x 2 − a / b / ∗ y 2 ) 所 以 得 到 递 推 式 x 1 = y 2 , y 1 = x 2 − a / b ∗ y 2 设k=m/gcd(a,b),则求出ax+by=gcd(a,b)的解后,再乘以k就得到原来的解\\ 已知ax_1+by_1=gcd(a,b),且gcd(a,b)=gcd(b,a\%b)\\ 则bx_2+(a-a/b*b)y_2=gcd(b,a\%b)\\ 结合两条式子,得到ax_1+by_1=bx_2+(a-a/b*b)y_2\\ 整理,即ax_1+by_1=ay_2+b(x_2-a/b/*y_2)\\ 所以得到递推式x_1=y_2,y_1=x_2-a/b*y_2 k=m/gcd(a,b),ax+by=gcd(a,b)kax1+by1=gcd(a,b),gcd(a,b)=gcd(b,a%b)bx2+(aa/bb)y2=gcd(b,a%b)ax1+by1=bx2+(aa/bb)y2ax1+by1=ay2+b(x2a/b/y2)x1=y2,y1=x2a/by2
递推到最后b=0,此时x=1,y=0就是一组整数解。

int exgcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {//推理1,终止条件
        x = 1;
        y = 0;
        return a;
    }
    int r = exgcd(b, a%b, x, y);
    //先得到更底层的x2,y2,再根据计算好的x2,y2计算x1,y1。
    //推理2,递推关系
    int t = y;
    y = x - (a/b) * y;
    x = t;
    return r;
}

通解:
x = x 0 + ( b / g c d ) ∗ t y = y 0 − ( a / g c d ) ∗ t x=x_0+(b/gcd)*t\\ y=y_0-(a/gcd)*t x=x0+(b/gcd)ty=y0(a/gcd)t

同余方程

形 如 a x ≡ c ( m o d   b ) , 表 示 a x % b = c % b 形如ax\equiv c(mod\ b),表示ax\%b =c\%b\\ axc(mod b),ax%b=c%b

如何与上述贝祖定理联系呢?由上述关系可设:
a x = k 1 b + r c = k 2 b + r 即 a x = k 1 b + ( c − k 2 b ) a x + b ( k 2 − k 1 ) = c ax=k_1b+r\\ c=k_2b+r\\ 即ax=k_1b+(c-k_2b)\\ ax+b(k_2-k_1)=c ax=k1b+rc=k2b+rax=k1b+(ck2b)ax+b(k2k1)=c
所以在已知a,b,c的值情况下**(满足解题条件**),可以求出x的整数解,通解

乘法逆元

a x ≡ 1 ( m o d   b ) ax\equiv 1(mod\ b) ax1(mod b)

同余方程的特殊情况,此时称x为a的乘法逆元,最小正整数解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值