Spark之spark-submit详解

spark-submit命令

查看 spark-submit 命令帮助:

[hadoop@master root]$ spark-submit 
Usage: spark-submit [options] <app jar | python file | R file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Usage: spark-submit run-example [options] example-class [example args]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn,
                              k8s://https://host:port, or local (Default: local[*]).
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor. File paths of these files
                              in executors can be accessed via SparkFiles.get(fileName).

  --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.
                              This argument does not work with --principal / --keytab.

  --help, -h                  Show this help message and exit.
  --verbose, -v               Print additional debug output.
  --version,                  Print the version of current Spark.

 Cluster deploy mode only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)

 YARN-only:
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.
通用可选参数

–master
在这里插入图片描述
–deploy-mode
Driver 程序运行的地方,client 或者 cluster,默认是client。

–class
主类名称,含包名。

–jars
逗号分隔的本地 JARS, Driver 和 executor 依赖的第三方 jar 包。

–files
用逗号隔开的文件列表,会放置在每个executor工作目录中, 通过 SparkFiles.get(fileName) 调用。
(可以用来上传配置文件)

–conf
spark 的配置属性,形如:–conf <key>=<value>

–properties-file
如果使用–properties-file,在–properties-file中定义的属性就不必要在spark-sumbit中再定义了,比如在conf/spark-defaults.conf 定义了spark.master,就可以不使用–master了。如果不指定,默认使用 conf/spark-defaults.conf文件。
关于Spark属性的优先权为:SparkConf方式 > 命令行参数方式 >文件配置方式。

–driver-memory
Driver 程序使用内存大小(例如:1000M,5G),默认 1024M

–executor-memory
每个 executor 内存大小(如:1000M,2G),默认 1G

Cluster deploy mode only

–driver-cores
driver 使用的 core,默认为 1,仅在 cluster 模式下。

Spark standalone or Mesos with cluster deploy mode only

–supervise
失败后是否重启 Driver,仅限于 Spark alone 或者 Mesos 模式

Spark standalone and Mesos only

–total-executor-cores
executor 使用的总核数,仅限于 SparkStandalone、Spark on Mesos模式

Spark standalone and YARN only

–executor-cores
每个 executor 使用的 core 数,Spark on Yarn 默认为 1,standalone 默认为 worker 上所有可用的 core。

YARN-only:

–queue
指定资源队列的名称,默认:default
–num-executors
一共启动的 executor 数量,默认是 2 个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值