插入数据优化
1.批量插入数据
Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
2.手动控制事务
start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;
3.主键顺序插入,性能要高于乱序插入。
1 主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
2 主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89
主键优化
1.满足业务需求的情况下,尽量降低主键的长度。
2.插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
3.尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
4.业务操作时,避免对主键的修改。
5.从分裂页 和合并页这个维度 去考虑问题
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。 默认50%
order by优化原则:
A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
B. 尽量使用覆盖索引。
C. 多字段排序, 一个升序一个降序,此时需要注意联合索引 在创建时的规则(ASC/DESC)。
D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小
sort_buffer_size(默认256k)。
group by优化
A. 在分组操作时,可以通过索引来提高效率。
B. 分组操作时,索引的使用也是满足最左前缀法则的。
limit优化
原因:在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。
优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
explain
select * from tb_sku t ,
(select id from tb_sku order by id limit 2000000,10) a
where t.id = a.id;
count优化
count用法 | 含义 |
---|---|
count(主键) | InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null) |
count(数字) | InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1” 进去,直接按行进行累加。 |
count(*) | InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接 按行进行累加。 |
count(字段) | 没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。 |
按照效率排序的话
count(字段) < count(主键 id) < count(1) ≈ count(*),
所以尽量使用 count(*)。
update优化
我们主要需要注意一下update语句执行时的注意事项。
update course set name = 'javaEE' where id = 1 ;
当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。
但是当我们在执行如下SQL时。
update course set name = 'SpringBoot' where name = 'PHP' ;
当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁 。